{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
methicillin
to a specific field?
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Liquiritigenin is a plant-derived flavonoid isolated from the roots of plants belonging to licorice species (Glycyrrhiza uralensis, Glycyrrhiza glabra, Glycyrrhiza inflate etc) and is available in common foods and alternative medicine. Liquiritigenin is one of the major active compounds of MF101, selective ER-beta agonist herbal extract of 22 botanical ingredients originally tested for reducing the frequency and severity of menopausal hot flashes. At sufficient concentrations, liquiritigenin is also a partial agonist of ER-alpha but has a 20-fold higher affinity for ER-beta than for ER-alpha. Several studies showed that liquiritigenin exerts cytoprotective effects against heavy metal-induced toxicity in cultured hepatocytes, has protective effects against liver injuries induced by acetaminophen and buthione sulfoximine in rats and has an anti-inflammatory effect in macrophages suggesting its potential therapeutic use for liver diseases. Liquiritigenin inhibits the activity of MAO A and B in rat brain mitochondria and displayed favorable properties as a specific transient receptor potential melastatin 3 (TRPM3) blocker. Anti-hepatocellular carcinoma effects of liquiritigenin are related to its modulation of the activations of mitogen-activated protein kinase (MAPKs) and was discovered, that this compound is a potential therapeutic agent for hepatocellular carcinoma treatment.
Status:
US Previously Marketed
First approved in 1942
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Benzethonium chloride, also known as hyamine, is a synthetic quaternary ammonium salt. It has surfactant, antiseptic, and anti-infective properties and it is used as a topical antimicrobial agent in first aid antiseptics. It is also found in cosmetics and toiletries such as mouthwashes, anti-itch ointments, and antibacterial moist towelettes. Benzethonium chloride exhibits a broad spectrum of microbiocidal activity against bacteria, fungi, mold and viruses. The US Food and Drug Administration (FDA) specifies that the safe and effective concentrations for benzethonium chloride are 0.1-0.2% in first aid products. Aqueous solutions of benzethonium chloride are not absorbed through the skin. It is not approved in the US or Europe for use as a food additive. Being a quaternary ammonium salt, it is more toxic than negatively charged surfactants. However, in a two-year study on rats, there was no evidence of carcinogenic activity. Benzethonium chloride was characterized as a novel anticancer compound possessing both in vitro and in vivo efficacy justifying further investigation.
Status:
Possibly Marketed Outside US
Source:
M016
(2023)
Source URL:
First approved in 2023
Source:
M016
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Possibly Marketed Outside US
Source:
21 CFR 358A
(1992)
Source URL:
First approved in 1992
Source:
21 CFR 358A
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Glabridin is an isoflavane found in the root extract of licorice (Glycyrrhiza glabra). Glabridin is considered to be a phytoestrogen and has been associated with numerous biological properties ranging from antioxidant, anti-inflammatory, neuroprotective, anti-atherogenic effects, to the regulation of energy metabolism, but also including anti-tumorigenic, anti-nephritic, antibacterial and skin-whitening activities. A glabridin-enriched extract is widely used in a cosmetic formulation as anti-inflammatory, antioxidant and skin whitening agent. Anti-inflammatory action of glabridin is linked to downregulation of NF-κB, AP-1 and MAPKS signaling. Glabridin-induced attenuation of atherosclerosis is related to a reduction in macrophages-associated oxidation of low-density lipoprotein.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Garenoxacin is an antibacterial agent active against a range of aerobic Gram-positive and Gram-negative bacteria. It exerts its action by inhibiting bacterial DNA gyrase and topoisomerase IV. The drug was withdrawn from the market in Europe and was never approved in the USA. Garenoxacin is still marketed in Japan under the name Geninax.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Iclaprim is an investigational broad-spectrum diaminopyrimidine antibiotic in development for the treatment of acute bacterial skin and skin structure infections (ABSSSIs). Iclaprim acts on bacterial cells by competitively inhibiting dihydrofolate reductase (DHFR), a key enzyme in the folate cycle; the same mode of inhibition is exerted by trimethoprim. Iclaprim resistance is mainly determined by point mutations in the dfr gene as studied in S. aureus and S. pneumoniae. Surveillance studies demonstrate that the spectrum of activity of iclaprim includes many
organisms indicated in cSSSI including S. aureus and S. pyogenes. Iclaprim is bactericidal in vitro, generally at concentrations equal to the MIC that are maintained in human plasma for several hours after a therapeutic dose. Bactericidal activity is primarily time-dependent and concentration independent. Due to its structural similarity with trimethoprim, iclaprim is synergistic with
sulfonamides against a broad spectrum of bacterial species. The antimicrobial mechanism of action of iclaprim is mediated by competitive inhibition of
bacterial DHFR, the same mode of inhibition exerted by TMP. The activity of iclaprim against TMP-R mutants of S. aureus and S. pneumoniae is attributable to additional hydrophobic interaction between iclaprim and the enzyme. The same mechanism of action of iclaprim, competitive inhibition with the natural substrate DHF, is seen against both TMP-S and -R enzymes. Iclaprim is well suited for use as a first-line empiric monotherapy in patients with ABSSSI who are comorbid with renal impairment for the following reasons. n July 2015, the U.S. Food and Drug Administration, or FDA, designated the IV formulation of iclaprim as a Qualified Infectious Disease Product (QIDP) for ABSSSI and HABP. QIDP status grants iclaprim regulatory Fast Track designation, Priority Review and, if approved, a five-year extension to the statutory market exclusivity period in the United States, resulting in 10 years of market exclusivity from the date of approval.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Nemonoxacin is a non-fluorinated quinolone antibiotic in clinical development in an oral and intravenous formulation. It exhibits potent antibacterial activities against Gram-positive, Gram-negative, and atypical pathogens, especially methicillin-resistant Staphylococcus aureus. The molecule inhibits bacterial DNA synthesis by forming a ternary complex with a DNA molecule and gyrase and topoisomerase IV enzymes, thus blocking bacterial DNA supercoiling. Nemonoxacin is developed by TaiGen Biotechnology Company and has reached worldwide approval in 2014 and is marketed under the name Taigexyn®.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Arbekacin is a broad-spectrum aminoglycoside used to treat methicillin-resistant Staphylococcus aureus (MRSA). Arbekacin has antibacterial activities against high-level gentamicin-resistant Enterococci, multidrug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii et al. In a cell-free system, habekacin (arbekacin) interfered with polypeptide synthesis, caused codon misreading, and inhibited translocation of N-acetylphenylalanyl-tRNA from the acceptor site to the donor site on ribosomes. Arbekacin bound to both 50S and 30S ribosomal subunits. Arbekacin has been approved as an injectable formulation in Japan since 1990, under the trade name Habekacin, for the treatment of patients with pneumonia and sepsis caused by MRSA. Meiji Seika Pharma is developing an inhaled aerosol formulation of arbekacin for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Nobelpharma is developing an intravenous formulation of arbekacin sulfate, known as nonsense readthrough compound or NPC 14, for the treatment of Duchenne muscular dystrophy.