U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 713 results


Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Brivaracetam (UCB 34714, trade name Briviact), the 4-n-propyl analog of levetiracetam, is a racetam derivative with anticonvulsant properties. Briviact is indicated as adjunctive therapy in the treatment of partial-onset seizures in patients 16 years of age and older with epilepsy. Brivaracetam is believed to act by binding to the ubiquitous synaptic vesicle glycoprotein 2A (SV2A), like levetiracetam, but with 20-fold greater affinity. There is some evidence that racetams including levetiracetam and brivaracetam access the luminal side of recycling synaptic vesicles during vesicular endocytosis. They may reduce excitatory neurotransmitter release and enhance synaptic depression during trains of high-frequency activity, such as is believed to occur during epileptic activity.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Trabectedin (ET-743) is a marine alkaloid isolated from the Caribbean tunicate Ecteinascidia turbinata. Trabectedin was approved for the treatment of liposarcoma or leiomyosarcoma (USA and Europe) and ovarian cancer (only in Europe). Trabectedin exerts its anti-cancer action by binding guanine residues in the minor groove of DNA. The binding prevents DNA from interacting with transcription factors and the reparation system and results in perturbation of the cell cycle and eventual cell death.
Cholic acid is a primary bile acid synthesized from cholesterol in the liver. Endogenous bile acids including cholic acid enhance bile flow and provide the physiologic feedback inhibition of bile acid synthesis. The mechanism of action of cholic acid has not been fully established; however, it is known that cholic acid and its conjugates are endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR). FXR regulates enzymes and transporters that are involved in bile acid synthesis and in the enterohepatic circulation to maintain bile acid homeostasis under normal physiologic conditions. U.S. Food and Drug Administration approved Cholbam (cholic acid) capsules, the first FDA approved treatment for pediatric and adult patients with bile acid synthesis disorders due to single enzyme defects, and for patients with peroxisomal disorders (including Zellweger spectrum disorders).
Ixazomib (trade name Ninlaro) is a drug for the treatment of multiple myeloma in adults after at least one prior therapy, in combination with lenalidomide and dexamethasone. It is taken by mouth in form of capsules. Common side effects include diarrhea, constipation and low platelet count. Like the older bortezomib (which can only be given by injection), it acts as a proteasome inhibitor, has orphan drug status in the US and Europe. At therapeutic concentrations, ixazomib selectively and reversibly inhibits the protein proteasome subunit beta type-5 (PSMB5) with a dissociation half-life of 18 minutes. This mechanism is the same as of bortezomib, which has a much longer dissociation half-life of 110 minutes; the related drug carfilzomib, by contrast, blocks PSMB5 irreversibly. Proteasome subunits beta type-1 and type-2 are only inhibited at high concentrations reached in cell culture models. PSMB5 is part of the 20S proteasome complex and has enzymatic activity similar to chymotrypsin. It induces apoptosis, a type of programmed cell death, in various cancer cell lines. A synergistic effect of ixazomib and lenalidomide has been found in a large number of myeloma cell lines. The medication is taken orally as a prodrug, ixazomib citrate, which is a boronic ester; this ester rapidly hydrolyzes under physiological conditions to its biologically active form, ixazomib, a boronic acid. Absolute bioavailability is 58%, and highest blood plasma concentrations of ixazomib are reached after one hour. Plasma protein binding is 99%.
Miltefosine is an anti-leishmanial agent. It is an alkyl phospholipids compound, was originally intended for breast cancer and other solid tumors. However, it could not be developed as an oral agent because of dose-limiting gastro-intestinal toxicity, and only a topical formulation is approved for skin metastasis. But Miltefosine showed excellent antileishmanial activity both in vitro and in experimental models. Miltefosine is effective in vitro against both promastigotes and amastigotes of various species of Leishmania and also other kinetoplastidae (Trypanosoma cruzi,T. brucei) and other protozoan parasites (Entamoeba histolytica, Acanthamoeba). Mechanism of action is unknown. It is likely to involve interaction with lipids (phospholipids and sterols), including membrane lipids, inhibition of cytochrome c oxidase (mitochondrial function), and apoptosis-like cell death. Miltefosine is approved for the treatment of Visceral leishmaniasis (due to Leishmania donovani), Cutaneous leishmaniasis (due to Leishmania braziliensis, Leishmania guyanensis, and Leishmania panamensis) and Mucosal leishmaniasis (due to Leishmania braziliensis).
Status:
First approved in 2014
Source:
Prasterone by Health Science Funding, LLC
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dehydroepiandrosterone (INTRAROSA™, prasterone) is a major C19 steroid produced from cholesterol by the adrenal cortex. It is also produced in small quantities in the testis and the ovary. Dehydroepiandrosterone (INTRAROSA, prasterone) is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It indicated for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause. The mechanism of action of dehydroepiandrosterone (INTRAROSA, prasterone) in postmenopausal women with vulvar and vaginal atrophy is not fully established.

Class (Stereo):
CHEMICAL (ACHIRAL)


Pirfenidone is a synthetic antifibrotic agent indicated for the treatment of idiopathic pulmonary fibrosis as Esbriet. Pirfenidone inhibits fibroblast, epidermal, platelet-derived, and transforming beta-1 growth factors. It also inhibits DNA synthesis and the production of mRNA for collagen types I and III, resulting in a reduction in radiation-induced fibrosis. Pirfenidone has demonstrated activity in multiple fibrotic conditions however the exact mechanism of action of pirfenidone in the treatment of IPF has not been established.
Nintedanib is a receptor tyrosine kinase inhibitor with potential antiangiogenic and antineoplastic activities. It is the only kinase inhibitor drug approved to treat idiopathic pulmonary fibrosis. that targets multiple receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (nRTKs). Nintedanib inhibits the following RTKs: platelet-derived growth factor receptor (PDGFR) α and β, fibroblast growth factor receptor (FGFR) 1-3, vascular endothelial growth factor receptor (VEGFR) 1-3, and Fms-like tyrosine kinase-3 (FLT3). Among them, FGFR, PDGFR, and VEGFR have been implicated in IPF pathogenesis. Nintedanib binds competitively to the adenosine triphosphate (ATP) binding pocket of these receptors and blocks the intracellular signaling which is crucial for the proliferation, migration, and transformation of fibroblasts representing essential mechanisms of the IPF pathology.
Tasimelteon, developed by Vanda Pharmaceuticals Inc under license from Bristol-Myers Squibb Co, is a melatonin receptor agonist. Tasimelteon differs structurally from melatonin and drugs with known melatonin agonist activity, in particular by its distinct aromatic group and linker. Tasimelteon bears also no structural relationship to any other approved active substance. Tasimelteon is presumably acts through activation of MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. Tasimelteon is approved for the treatment of Non24-Hour Sleep-Wake Disorder.
Apremilast (brand name Otezla) selective inhibitor of phosphodiesterase 4 is used for the treatment of patients with moderate to severe plaque psoriasis. OTEZLA is the first and only PDE4 inhibitor approved for the treatment of plaque psoriasis, a chronic inflammatory disease of the skin resulting from an uncontrolled immune response. Apremilast also inhibits spontaneous production of TNF-alpha from human rheumatoid synovial cells. It has anti-inflammatory activity. By inhibiting PDE-4, apremilast increases intracellular levels of cAMP and thereby inhibits the production of multiple proinflammatory mediators including PDE-4, TNF-alpha, interleukin-2 (IL-2), interferon-gamma, leukotrienes, and nitric oxide synthase.