{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for dimethyl root_names_name in Any Name (approximate match)
Status:
US Approved Rx
(2011)
Source:
ANDA078365
(2011)
Source URL:
First approved in 2001
Source:
NDA021165
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Desloratadine is an active, descarboethoxy metabolite of loratadine. It acts by selective inhibition of H1 histamine receptor and thus provides relief to patients with allergic rhinitis and chronic idiopathic urticaria. Desloratadine was approved by FDA and it is currently marketed under the name Clarinex (among the others).
Status:
US Approved Rx
(2016)
Source:
NDA206110
(2016)
Source URL:
First approved in 2001
Source:
NDA021227
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Caspofungin is an echinocandin antifungal drug, which is approved and is sold under the brand worldwide name cancidas. Caspofungin inhibits the synthesis of beta (1,3)-D-glucan, an essential component of the cell wall of susceptible Aspergillus species and Candida species. Beta (1,3)-D-glucan is not present in mammalian cells. Cancidas is indicated for the treatment of candidemia and the following candida infections: intra-abdominal abscesses, peritonitis, and pleural space infections in adult and pediatric patients. Also is indicated for the treatment of esophageal candidiasis in adult and pediatric patients and for the treatment of invasive aspergillosis in adult and pediatric patients, but has not been studied as initial therapy for invasive aspergillosis.
Status:
US Approved Rx
(1999)
Source:
NDA050748
(1999)
Source URL:
First approved in 1999
Source:
NDA050748
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Dalfopristin is a pristinamycin-like component of anti-bacterial drug called Synercid which also containes quinupristin (quinupristin:dalfopristin ratio is 30:70 (w/w)). The drug was approved by FDA and used for the treatment of skin diseases caused by Staphylococcus aureus or Streptococcus pyogenes. Dalfopristin binds to the RNA of the 50S ribosomal subunit and thus inhibits the late phase of protein synthesis.
Status:
US Approved Rx
(2008)
Source:
ANDA077200
(2008)
Source URL:
First approved in 1999
Source:
ZADITOR by ALCON PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ketotifen is a cycloheptathiophene blocker of histamine H1 receptors and release of inflammatory mediators. It has been proposed for the treatment of asthma, rhinitis, skin allergies, and anaphylaxis. Ketotifen was developed in 1970 by Sandoz Pharmaceuticals of Switzerland. It is a benzocycloheptathiophene derivative and was initially marketed as an inhibitor of anaphylaxis. The pharmacodynamic properties of ketotifen are many, because it is an inhibitor of the release and/or activity of mast cell and basophil mediators, including histamine, neutrophil, and eosinophil chemotactic factors, arachidonic acid metabolites, prostaglandins, and leukotrienes. Properties of ketotifen which may contribute to its antiallergic activity and its ability to affect the underlying pathology of asthma include inhibition of the development of airway hyper-reactivity associated with activation of platelets by PAF (Platelet Activating Factor), inhibition of PAF-induced accumulation of eosinophils and platelets in the airways, suppression of the priming of eosinophils by human recombinant cytokines and antagonism of bronchoconstriction due to leukotrienes. Ketotifen is marketed under many brand names worldwide. Ketotifen inhibits the release of mediators from mast cells involved in hypersensitivity reactions. Decreased chemotaxis and activation of eosinophils have also been demonstrated. Ketotifen also inhibits cAMP phosphodiesterase.
Status:
US Approved Rx
(2013)
Source:
ANDA201914
(2013)
Source URL:
First approved in 1998
Source:
NDA020864
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan acts as an agonist at serotonin 5-HT1B and 5-HT1D receptors. Rizatriptan binds with high affinity to human cloned 5-HT1B/1D receptors. Rizatriptan benzoate presumably exerts its therapeutic effects in the treatment of a migraine headache by binding to 5-HT1B/1D receptors located on intracranial blood vessels and sensory nerves of the trigeminal system. Rizatriptan is completely absorbed following oral administration. The mean oral absolute bioavailability of the rizatriptan benzoate tablet is about 45%, and mean peak plasma concentrations are reached in approximately 1-1.5 hours. The presence of a migraine headache did not appear to affect the absorption or pharmacokinetics of rizatriptan. Food has no significant effect on the bioavailability of rizatriptan but delays the time to reach peak concentration by an hour. The primary route of rizatriptan metabolism is via oxidative deamination by monoamine oxidase-A (MAO-A) to the indole acetic acid metabolite, which is not active at the 5-HT1B/1D receptor. N-mono-desmethyl-rizatriptan, a metabolite with activity similar to that of parent compound at the 5-HT1B/1D receptor, is formed to a minor degree. Plasma concentrations of N-mono-desmethyl-rizatriptan are approximately 14% of those of parent compound, and it is eliminated at a similar rate. Other minor metabolites, the N-oxide, the 6-hydroxy compound, and the sulfate conjugate of the 6-hydroxy metabolite are not active at the 5-HT1B/1D receptor.
Status:
US Approved Rx
(2017)
Source:
ANDA208605
(2017)
Source URL:
First approved in 1998
Source:
NDA020850
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Status:
US Approved Rx
(2020)
Source:
ANDA212818
(2020)
Source URL:
First approved in 1997
Source:
NDA020497
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Toremifene is an antineoplastic hormonal agent primarily used in the treatment of advanced breast cancer. Toremifene is a nonsteroidal agent that has demonstrated potent antiestrogenic properties in animal test systems. The antiestrogenic effects may be related to its ability to compete with estrogen for binding sites in target tissues such as breast. Toremifene inhibits the induction of rat mammary carcinoma induced by dimethylbenzanthracene (DMBA) and causes the regression of already established DMBA-induced tumors. In this rat model, Toremifene appears to exert its antitumor effects by binding the estrogen receptors. In cytosols derived from human breast adenocarcinomas, Toremifene competes with estradiol for estrogen receptor protein. Toremifene is a nonsteroidal triphenylethylene derivative. Toremifene binds to estrogen receptors and may exert estrogenic, antiestrogenic, or both activities, depending upon the duration of treatment, animal species, gender, target organ, or endpoint selected. The antitumor effect of toremifene in breast cancer is believed to be mainly due to its antiestrogenic effects, in other words, its ability to compete with estrogen for binding sites in the cancer, blocking the growth-stimulating effects of estrogen in the tumor. Toremifene may also inhibit tumor growth through other mechanisms, such as induction of apoptosis, regulation of oncogene expression, and growth factors. Toremifene is used for the treatment of metastatic breast cancer in postmenopausal women with estrogen receptor-positive or receptor-unknown tumors. Toremifene is currently under investigation as a preventative agent for prostate cancer in men with high-grade prostatic intraepithelial neoplasia and no evidence of prostate cancer. Toremifene is marketed in the United States under the brand name Fareston.
Status:
US Approved Rx
(2019)
Source:
NDA211882
(2019)
Source URL:
First approved in 1997
Source:
NDA020600
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Tazarotene a novel acetylenic retinoid is known to be effective in the topical treatment of psoriasis and acne. Tazarotene is rapidly and completely metabolized to its active metabolite tazarotenic acid. The exact mechanism of action of tazarotenic acid in the treatment of psoriasis and acne is not clearly defined. However, it is thought that the selective interaction of tazarotenic acid with the retinoic acid receptor (RAR) family (RARα, RARβ, and RARγ) and the subsequent induction of both positive and negative gene regulatory effects may be involved.
Status:
US Approved Rx
(2018)
Source:
NDA210867
(2018)
Source URL:
First approved in 1997
Source:
NADA141087
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Moxidectin is a semi-synthetic methoxime derivative of LL F-2924α, commonly referred as F-alpha or nemadectin F-alpha is a product of fermentation of Streptomyces cyaneogriseus subsp. noncyanogenus, a bacterial organism isolated in 1983 from a sample of sand from Victoria, Australia. Moxidectin is a potent, broad-spectrum endectocide with activity against a wide range of nematodes, insects and acari. The compound acts by binding to ligand-gated chloride channels, more specifically the subtypes that are gamma-aminobutyric (GABA) mediated and glutamate-gated. The consequence of Moxidectin binding and activation is an increased permeability, leading to an influx of chloride ions and flaccid paralysis of the parasite leading to death. The macrocyclic lactones probably act by binding to and opening glutamate-gated chloride channels found only in neurons and myocytes of invertebrates. Because moxidectin is very lipophilic, it becomes highly concentrated in the serum. When the concentration of moxidectin in the serum is high, moxidectin is able to cross the blood-brain barrier. Once it is in the central nervous system, a macrocyclic lactone stimulates the synaptic secretion of the inhibitory neurotransmitter, GABA. By binding at the receptor site, GABA causes influx of chloride ions into neurons, causing the neurons to become hyperpolarised, which in turn, causes diminution in neuronal activity, resulting in sedation and relaxation of the skeletal muscles. Signs displayed by foals with moxidectin toxicity included dyspnoea, depression, ataxia, weakness, coma and seizures. In a Phase 3 study compared the efficacy, safety and tolerability of moxidectin and ivermectin in subjects infected with Onchocerca volvulus, which is the parasite that causes river blindness.
Status:
US Approved Rx
(2012)
Source:
ANDA091567
(2012)
Source URL:
First approved in 1996
Source:
ALLEGRA by CHATTEM SANOFI
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Fexofenadine is a second-generation, long lasting H1-receptor antagonist (antihistamine) which has a selective and peripheral H1-antagonist action. Histamine is a chemical that causes many of the signs that are part of allergic reactions, such as the swelling of tissues. Histamine is released from histamine-storing cells (mast cells) and attaches to other cells that have receptors for histamine. The attachment of the histamine to the receptors causes the cell to be "activated," releasing other chemicals which produce the effects that we associate with allergy. Fexofenadine blocks one type of receptor for histamine (the H1 receptor) and thus prevents activation of cells by histamine. Unlike most other antihistamines, Fexofenadine does not enter the brain from the blood and, therefore, does not cause drowsiness. Fexofenadine lacks the cardiotoxic potential of terfenadine, since it does not block the potassium channel involved in repolarization of cardiac cells. Fexofenadine is sold under the trade name Allegra among others. ALLEGRA is indicated for the relief of symptoms associated with seasonal allergic
rhinitis in adults and children 2 years of age and older.