{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for fludrocortisone root_relationships_relatedSubstance_refPname in Related Substance Name (approximate match)
Status:
US Approved Rx
(2014)
Source:
ANDA204165
(2014)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2012)
Source:
ANDA201109
(2012)
Source URL:
First approved in 1997
Source:
NDA020639
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Quetiapine, marketed as SEROQUEL XR, is an atypical antipsychotic approved for the treatment of schizophrenia, bipolar disorder, and along with an antidepressant to treat major depressive disorder. The mechanism of action of SEROQUEL XR in the treatment of schizophrenia, bipolar disorder and major depressive disorder (MDD), is unknown. However, its efficacy in schizophrenia could be mediated through a combination of dopamine type 2 (D2) and serotonin type 2A (5HT2A) antagonism. The active metabolite, N-desalkyl quetiapine (norquetiapine), has similar activity at D2, but greater activity at 5HT2A receptors, than the parent drug (quetiapine). Quetiapine’s efficacy in bipolar depression and MDD may partly be explained by the high affinity and potent inhibitory effects that norquetiapine exhibits for the norepinephrine transporter. Antagonism at receptors other than dopamine and serotonin with similar or greater affinities may explain some of the other effects of quetiapine and norquetiapine: antagonism at histamine H1 receptors may explain the somnolence, antagonism at adrenergic α1b receptors may explain the orthostatic hypotension, and antagonism at muscarinic M1 receptors may explain the anticholinergic effects. Quetiapine and norquetiapine have affinity for multiple neurotransmitter receptors including dopamine D1 and D2, serotonin 5HT1A and 5HT2A, histamine H1, muscarinic M1, and adrenergic α1b and α2 receptors. Quetiapine differs from norquetiapine in having no appreciable affinity for muscarinic M1 receptors whereas norquetiapine has high affinity. Quetiapine and norquetiapine lack appreciable affinity for benzodiazepine receptors.
Status:
US Approved Rx
(2014)
Source:
ANDA204165
(2014)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2023)
Source:
ANDA214344
(2023)
Source URL:
First approved in 1996
Source:
NDA020702
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Atorvastatin calcium (LIPITOR®) is a pyrrole and heptanoic acid derivative, a synthetic lipid-lowering agent. Atorvastatin is a selective, competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin is used to reduce serum levels of LDL(low-density lipoprotein)-cholesterol; apolipoprotein B; and triglycerides and to increase serum levels of HDL(high-density lipoprotein)-cholesterol in the treatment of hyperlipidemias and prevention of cardiovascular disease in patients with multiple risk factors.
Status:
US Approved Rx
(1996)
Source:
NDA020629
(1996)
Source URL:
First approved in 1994
Source:
FAMVIR by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Penciclovir (DENAVIR®) is a synthetic acyclic guanine derivative with antiviral activity, mainly used to treat infections from herpes simplex virus (HSV) types 1 and 2. In cells infected with HSV-1 or HSV-2, the viral thymidine kinase phosphorylates penciclovir to a monophosphate form that, in turn, is converted by cellular kinases to the active form penciclovir triphosphate. Biochemical studies demonstrate that penciclovir triphosphate inhibits HSV polymerase competitively with deoxyguanosine triphosphate. Consequently, herpes viral DNA synthesis and, therefore, replication are selectively inhibited. Famciclovir (FAMVIR®) is a prodrug form of penciclovir with improved oral bioavailability.
Status:
US Approved Rx
(2009)
Source:
ANDA078531
(2009)
Source URL:
First approved in 1993
Source:
KYTRIL by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Granisetron is a selective inhibitor of type 3 serotonergic (5-HT3) receptors. The drug is structurally and pharmacologically related to ondansetron, another selective inhibitor of 5-HT3 receptors. The serontonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery, and centrally in the chemoreceptor trigger zone of the area postrema. The temporal relationship between the emetogenic action of emetogenic drugs and the release of serotonin, as well as the efficacy of antiemetic agents suggest that chemotherapeutic agents release serotonin from the enterochromaffin cells of the small intestine by causing degenerative changes in the GI tract. The serotonin then stimulates the vagal and splanchnic nerve receptors that project to the medullary vomiting center, as well as the 5-HT3 receptors in the area postrema, thus initiating the vomiting reflex, causing nausea and vomiting. Granisetron is a potent, selective antagonist of 5-HT3 receptors. The antiemetic activity of the drug is brought about through the inhibition of 5-HT3 receptors present both centrally (medullary chemoreceptor zone) and peripherally (GI tract). This inhibition of 5-HT3 receptors in turn inhibits the visceral afferent stimulation of the vomiting center, likely indirectly at the level of the area postrema, as well as through direct inhibition of serotonin activity within the area postrema and the chemoreceptor trigger zone. Granisetron is used for the prevention of nausea and vomiting associated with initial and repeat courses of emetogenic cancer therapy (including high dose cisplatin), postoperation, and radiation (including total body irradiation and daily fractionated abdominal radiation).
Status:
US Approved Rx
(2004)
Source:
ANDA076118
(2004)
Source URL:
First approved in 1991
Source:
NDA019851
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Benazepril is a prodrug which is metabolized by the liver into its active form benazeprilat via cleavage of the drug's ester group. Benazepril and Benazeprilat inhibit angiotensin-converting enzyme (ACE) in human subjects and animals. Benazeprilat has much greater ACE inhibitory activity than does Benazepril. It is indicated for the treatment of hypertension. It may be used alone or in combination with thiazide diuretics. Adverse reactions reported in controlled clinical trials and rarer events seen in post-marketing experience, include the following: Stevens-Johnson syndrome, pemphigus, apparent hypersensitivity reactions (manifested by dermatitis, pruritus, or rash), photosensitivity, and flushing, nausea, pancreatitis, constipation, gastritis, vomiting, and melena, thrombocytopenia and hemolytic anemia, anxiety, decreased libido, hypertonia, insomnia, nervousness, and paresthesia. Patients on diuretics, especially those in whom diuretic therapy was recently instituted, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with Benazepril. Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors (including benazepril) during therapy with lithium.
Status:
US Approved Rx
(2007)
Source:
NDA022058
(2007)
Source URL:
First approved in 1991
Source:
SUPPRELIN by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Histrelin is a gonadotropin releasing hormone (GnRH) agonist that acts as a potent inhibitor of gonadotropin when administered as an implant that delivers continuous therapeutic doses. Following an initial stimulatory phase with increased circulating levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), leading to a transient increase in concentration of gonadal steroids (testosterone and dihydrotestosterone in males), continuous administration of histrelin acetate results in decreased levels of LH and FSH due to a reversible down-regulation of the GnRH receptors in the pituitary gland and desensitization of the pituitary gonadotropes. As the product Supprelin LA (FDA), histrelin is indicated for the treatment of children with central precocious puberty (CPP). As the product Vantas (FDA), histrelin is indicated for the palliative treatment of advanced prostate cancer.
Status:
US Approved Rx
(1990)
Source:
NDA019886
(1990)
Source URL:
First approved in 1990
Source:
NDA019886
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Nafarelin acetate (brand name Synarel) is a synthetic agonist of gonadotrophin-releasing hormone (GnRH) [luteinising hormone-releasing hormone (LH-RH), which is indicated for management of endometriosis, including pain relief and reduction of endometriotic lesions and for the treatment of central precocious puberty (CPP). Nafarelin has also been used effectively in in vitro fertilisation programmes, and in hirsute women and those with uterine leiomyoma, particularly to induce preoperative fibroid shrinkage. Side effects are related to the low estrogen state and include hot flashes, vaginal dryness, headaches, mood changes, and decreased interest in sex.
Status:
US Approved Rx
(2004)
Source:
ANDA076994
(2004)
Source URL:
First approved in 1990
Source:
ULTRAVATE by SUN PHARM INDS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Halobetasol Propionate is the propionate salt form of halobetasol, a synthetic corticosteroid with anti-inflammatory, antipruritic, and vasoconstrictor activities. Halobetasol, a topical steroid, diffuses across cell membranes to interact with cytoplasmic corticosteroid receptors located in both the dermal and intradermal cells, thereby activating gene expression of anti-inflammatory proteins mediated via corticosteroid receptor response element. Specifically, this agent induces phospholipase A2 inhibitory proteins, which inhibit the release of arachidonic acid, thereby inhibiting the biosynthesis of potent mediators of inflammation, such as prostaglandins and leukotrienes. As a result, halobetasol reduces edema, erythema, and pruritus through its cutaneous effects on vascular dilation and permeability. The initial interaction, however, is due to the drug binding to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes.