U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 421 - 430 of 432 results

Status:
Investigational
Source:
NCT00131482: Phase 2 Interventional Terminated Radius Fracture
(2004)
Source URL:

Class:
PROTEIN

Rusalatide acetate (also known as chrysalin or TP 508) is a 23-amino acid peptide derived from human prothrombin; it represents part of the receptor-binding domain of the human thrombin molecule. Rusalatide acetate binds to high-affinity thrombin receptors and mimics cellular effects of thrombin at sites of tissue injury. Rusalatide acetate demonstrated safety and potential efficacy in phase I/II clinical trials for the treatment of diabetic foot ulcers. It interacts with cell surface receptors to stimulate a cascade of cellular and molecular wound healing events, including activation of nitric oxide signaling. In addition, this drug participated in phase II clinical trial to determine the effectiveness of four doses for treating broken wrists in adults. However, this study was terminated because the drug did not demonstrate benefit compared to placebo. Rusalatide acetate was also studied as a cardiovascular drug. However, in January 2012, Capstone discontinued the development of rusalatide, for financial reasons. Recent studies show that a single injection of TP508 (rusalatide acetate) administered 24 h after irradiation significantly increases survival and delays mortality in murine models of acute radiation mortality. Thus, this drug is being developed as a potential nuclear countermeasure.
Pentosan polysulfate sodium (brand name ELMIRON) is a low molecular weight heparin-like compound. It has anticoagulant and fibrinolytic effects and is indicated for the relief of bladder pain or discomfort associated with interstitial cystitis. The mechanism of action of pentosan polysulfate sodium in interstitial cystitis is not known but was discovered, that it t binds Fibroblast growth factors (FGFs) as well as other heparin-binding growth factors.
Enoxaparin is a low molecular weight heparin used as anticoagulant medication to treat and prevent deep vein thrombosis (DVT) and pulmonary embolism (PE) including during pregnancy and following certain types of surgery. Enoxaparin is a depolymerized derivative of Unfractionated heparin produced by controlled depolymerization using alkaline hydrolysis of the heparin benzylic ester. Like Unfractionated heparin, its major anticoagulant effect is mediated by interaction with antithrombin III, which in turn inactivates serine proteases like factors IIa (thrombin), IXa and Xa. Therefore, enoxaparin indirectly inhibits the conversion of prothrombin to thrombin and reduces the thrombin-mediated conversion of fibrinogen to fibrin, thus preventing clot formation. Among parenteral anticoagulants, enoxaparin stands out for certain major advantages: rapid onset of action, higher bioavailability, once- or twice-daily dosing that can be administered by patients at home without any need for monitoring, and no reported association with catheter thrombosis. Enoxaparin has been shown to be a safe and effective drug in a wide variety of thromboembolic conditions, and two decades of available data have undoubtedly inspired significant confidence. Although these properties make it a preferred option in a wide range of clinical disorders, lack of reliable antidote and accumulation in renal dysfunction are major concerns associated with its use, which are shared, apart from Unfractionated heparin, by most other available anticoagulants.
Нeparin (or Unfractionated heparin ) is an anticoagulant indicated for both the prevention and treatment of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolism (PE) as well as atrial fibrillation (AF). Heparin can also be used to prevent excess coagulation during procedures such as cardiac surgery, extracorporeal circulation or dialysis, including continuous renal replacement therapy. Heparin administration can be by intravenous (or subcutaneous route. Intravenous heparin is continuously administered for therapeutic anticoagulation, while intermittent subcutaneous administration is used to prevent thromboembolism. Once administered, heparin binds reversibly to antithrombin III (ATIII) and greatly accelerates the rate at which ATIII inactivates coagulation enzymes thrombin (factor IIa) and factor Xa. The heparin-ATIII complex can also inactivate factors IX, XI, XII, and plasmin, but the antithrombotic effect of heparin is well correlated to the inhibition of factor Xa. Typical adverse effects from heparin use include bleeding, thrombocytopenia, injection site reactions, and other adverse effects only seen with chronic heparin administration. Bleeding is a major complication associated with heparin use. Patients should undergo monitoring for new bleeding that may present in the urine or stool. Bleeding may also present as bruising, petechial rash and nosebleeds.
Нeparin (or Unfractionated heparin ) is an anticoagulant indicated for both the prevention and treatment of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolism (PE) as well as atrial fibrillation (AF). Heparin can also be used to prevent excess coagulation during procedures such as cardiac surgery, extracorporeal circulation or dialysis, including continuous renal replacement therapy. Heparin administration can be by intravenous (or subcutaneous route. Intravenous heparin is continuously administered for therapeutic anticoagulation, while intermittent subcutaneous administration is used to prevent thromboembolism. Once administered, heparin binds reversibly to antithrombin III (ATIII) and greatly accelerates the rate at which ATIII inactivates coagulation enzymes thrombin (factor IIa) and factor Xa. The heparin-ATIII complex can also inactivate factors IX, XI, XII, and plasmin, but the antithrombotic effect of heparin is well correlated to the inhibition of factor Xa. Typical adverse effects from heparin use include bleeding, thrombocytopenia, injection site reactions, and other adverse effects only seen with chronic heparin administration. Bleeding is a major complication associated with heparin use. Patients should undergo monitoring for new bleeding that may present in the urine or stool. Bleeding may also present as bruising, petechial rash and nosebleeds.
Status:
US Previously Marketed
First approved in 2000

Class:
POLYMER

Status:
Possibly Marketed Outside US
Source:
NCT02607319: Phase 4 Interventional Completed Sterility
(2015)
Source URL:

Class:
POLYMER

Status:
Possibly Marketed Outside US
Source:
NCT02630095: Phase 4 Interventional Unknown status Portal Vein Thrombosis
(2015)
Source URL:

Class:
POLYMER

Showing 421 - 430 of 432 results