U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 4261 - 4270 of 4331 results

Status:
Possibly Marketed Outside US
Source:
Japan:Bekanamycin Sulfate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bekanamycin is an aminoglycoside and is a congener of kanamycin. It is given topically as the sulfate for the treatment of eye infections. It is reported to be more toxic than kanamycin A. Antibiotic complex produced by Streptomyces kanamyceticus Okami & Umezawa from Japanese soil. There are no known interactions with other drugs.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

levomethadone, or R-(−)-methadone, is the active enantiomer of methadone; having approximately 50x the potency of the S-(+)-enantiomer as well as greater μ-opioid receptor selectivity.
Status:
Possibly Marketed Outside US
Source:
Japan:Norfenefrine Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Norfenefrine or meta-octopamine, also known as 3,β-dihydroxyphenethylamine, is an adrenergic agent used as a sympathomimetic drug which is marketed in Europe, Japan, and Mexico. Along with its structural isomer p-octopamine and the tyramines, norfenefrine is a naturally occurring, endogenous trace amine and plays a role as a minor neurotransmitter in the brain. Norfenefrine controls blood pressure in acute hypotensive states eg pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesth, MI, septicemia, blood transfusion and drug reactions. Adjunct in treatment of cardiac arrest and hypotension.
Status:
Possibly Marketed Outside US
Source:
Japan:3-Iodobenzylguanidine (131I)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Iobenguane, mainly use as a radiopharmaceutical, used in a scintigraphy method called MIBG scan. Synthetic guanethidine derivative that locates phaeochromocytomas and neuroblastomas. The radioisotope used can either be iodine-123 for imaging or iodine-131 for destruction of tissues that metabolize noradrenaline. Iodine 123 is a cyclotron-produced radionuclide that decays to Te 123 by electron capture. Images are produced by a I123 MIBG scintigraphy. It localizes to adrenergic tissue and thus can be used to identify the location of tumors such as pheochromocytomas and neuroblastomas. With I-131 it can also be used to eradicate tumor cells that take up and metabolize norepinephrine. The radioactive iodine component is responsible for its imaging properties. Iobenguane and guanethidine are substrates for the norepinephrine transporter (NET) and accumulate by the uptake mechanism into presynaptic nerve endings. Unlike norepinephrine, these drugs are protonated under physiologic conditions; therefore, they do not cross the blood–brain barrier and in vivo uptake is limited primarily to systemic neuronal tissue. The accumulation of iobenguane in myocardial tissue is also dictated by the high fraction of aortic blood flow that enters the coronary arteries. This physiology constitutes an ideal molecular targeting mechanism for diagnosis of various cardiac diseases, including heart failure, heart transplant rejection, ischemic heart disease, dysautonomia, and drug-induced cardiotoxicity, as well as cardiac neuropathy related to diabetes mellitus and Parkinson disease
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)

Ciramadol is an opioid agonist-antagonist analgesic with low potential for dependency. Ciramadol appears to be an effective analgesic, with tolerable gastrointestinal central nervous system side effects at both the 30-and 90-mg dose levels. Ciramadol is a mixed agonist-antagonist for the μ-opioid receptor. Side effects might include nausea and vomiting.
Status:
Possibly Marketed Outside US
Source:
Japan:Bevantolol Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Bevantolol (INN) was a drug candidate for angina and hypertension that acted as both a beta blocker and a calcium channel blocker. Animal experiments confirm both agonist and antagonist effects on alpha-receptors, in addition to antagonist activity at beta-1 receptors. By binding and antagonizing beta-1 receptors Bevantolol inhibits the normal normal epinephrine-mediated sympathetic actions such as increased heart rate. This has the effect of decreasing preload and blood pressure. Bevantolol was discovered and developed by Warner-Lambert but in January 1989 the company announced that it had withdrawn the New Drug Application. As of 2016 it wasn't marketed in the US, UK, or Europe.
cis-Dosulepin is a stereoisomer of Dothiepin (trade name Prothiaden, Dothep, Thaden, and Dopress; Dosulepin (INN, BAN) a tricyclic antidepressant that is used in several European and South Asian countries, as well as Australia, South Africa, and New Zealand. Dosulepin is used for the treatment of the major depressive disorder and neuropathic pain. Dosulepin is only Therapeutic Goods Administration and Medicines and Healthcare products Regulatory Agency approved for the treatment of the major depressive disorder. Dothiepin is not used in the United States. The central action of cis-dosulepin was compared with that of its antidepressant stereoisomer trans-dosulepin, cis-dosulepin exerted weaker anti-reserpine, anti-tetrabenazine, and 3H-5-HT (serotonin) uptake inhibiting actions than trans-dosulepin, but cis-dosulepin's inhibition of 3H-dopamine and 3H-norepinephrine uptake was slightly more potent than that of trans-dosulepin. On the other hand, cis-dosulepin exhibited extremely potent anticholinergic action in oxotremorine induced tremor, isolated ileum and the 3H-quinuclidinyl benzilate binding test. It also showed potent apomorphine enhancing the action and shortened the period of immobility in the forced swimming test in animals.
Status:
Possibly Marketed Outside US
Source:
Japan:Etilefrine Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Etilefrine is a cardiac stimulant used as an antihypotensive. Intravenous infusion of this compound increases cardiac output, stroke volume, venous return and blood pressure in man and experimental animals, suggesting stimulation of both α and β adrenergic receptors. However, in vitro studies indicate that etilefrine has a much higher affinity for β1 (cardiac) than for β2 adrenoreceptors. Intravenous etilefrine increases the pulse rate, cardiac output, stroke volume, central venous pressure and mean arterial pressure of healthy individuals. Marked falls in pulse rate, cardiac output, stroke volume and peripheral bloodflow, accompanied by rises in mean arterial pressure, occur when etilefrine is infused after administration of intravenous propranolol 2,5 mg. These findings indicate that etilefrine has both β1 and α1 adrenergic effects in man. The French Health Products Agency concluded that etilefrine and heptaminol have an unfavourable harm-benefit balance, and also placed restrictions on the use of midodrine.
Lisuride (DOPERGIN®), a highly active dopaminergic ergot derivative with prolactin-lowering properties, has a pronounced affinity for dopamine receptors. It may also act as an agonist at some serotonin receptors. Lisuride (DOPERGIN®) is concentrated within the pituitary where it acts on dopamine receptors which inhibit prolactin release. It can be used in the clinical conditions where a dopaminergic or prolactin-lowering effect is needed.
Gentamicin C1 is a part of gentamicin C complex, containing gentamicin C1, gentamicin C1a, and gentamicin C2 which compose approximately 80% of gentamicin and have been found to have the highest antibacterial activity. Commercial gentamicin C is a mixture of gentamicin C1, C1a, and C2. Gentamicin C1 has a methyl group in the 6' position of the 2-amino-hexose ring and is N methylated at the same position. Gentamicin is a broad spectrum aminoglycoside antibiotic. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like gentamicin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically gentamicin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Gentamicin complex is used for treatment of serious infections caused by susceptible strains of the following microorganisms: P. aeruginosa, Proteus species (indole-positive and indole-negative), E. coli, Klebsiella-Enterobactor-Serratia species, Citrobacter species and Staphylococcus species (coagulase-positive and coagulase-negative).

Showing 4261 - 4270 of 4331 results