{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m doxercalciferol
to a specific field?
Class (Stereo):
CHEMICAL (ABSOLUTE)
Sparfosate (PALA) is a stable transition state analogue for an aspartate transcarbamylase- cartalyzed reaction with antineoplastic activity. PALA is a potent inhibitor of aspartate transcarbamylase (Ki about 10(-8) M for ACTases of various origins), which in whole cells blocks the de novo synthesis of pyrimidines. Thus PALA inhibits de novo pyrimidine biosynthesis and increases the extent to which fluorouracil metabolites are incorporated into RNA. In vivo, low doses of PALA inhibit whole body pyrimidine synthesis. While this action is cytotoxic in vitro, extensive human testing demonstrates that PALA alone is devoid of selective antitumor activity. Interest in the therapeutic action of PALA derives from the demonstration that its action potentiates the cytotoxicity of several cytotoxic drugs, notably 5-fluorouracil (5-FU). Development of Sparfosate for cancer and Hepatitis B treatment is assumed to have been discontinued.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Quinpirole (LY 171,555) is a psychoactive drug and research chemical which acts as a selective D2 and D3 receptor agonist. Quinpirole is the most widely used D2 agonist in in vivo and in vitro studies. Specific quinpirole binding in rat brain was saturable, and dependent on temperature, membrane concentration, sodium concentration and guanine nucleotides. Saturation analysis revealed high affinity binding characteristics (KD = 2.3 nM) which were confirmed by association-dissociation kinetics. The regional distribution of [3H]quinpirole binding sites roughly paralleled the distribution of [3H]spiperone binding sites, with greatest densities present in the striatum, nucleus accumbens and olfactory tubercles. A variety of drugs, most notably monoamine oxidase inhibitors (MAOls), inhibit the binding of [3H]quinpirole, but not [3H]spiperone or [3H](-)N-n-Propylnorapomorphine, in rat striatal membranes by a mechanism that does not appear to involve the enzymatic activity of MAO. Clinically antidepressant MAOIs exhibited selectivity between sites labeled by [3H]quinpirole and [3H]spiperone as did a number of structurally related propargylamines and N-acylethylenediamine derivatives and other drugs such as debrisoquin and phenylbiguanide. Quinpirole has been shown to increase locomotion and sniffing behavior in mice and induces compulsive behavior symptomatic of obsessive compulsive disorder in rats.
Status:
Class (Stereo):
CHEMICAL (ACHIRAL)
Emilium is an antiarrhythmic agent and cardiac depressant.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Captamine is ethanethiol derivative that has been studied as the chelating and radioprotective agent. Captamine, a potent duodenal ulcerogenic, stimulates gastric acid and gastrin secretion and decreases immunoreactive somatostatin (IRS) from the gut and hypothalamus of the rat.
Status:
Investigational
Source:
NCT00605904: Phase 2 Interventional Completed Alcoholism
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
m-Chlorophenylpiperazine (meta-chlorophenylpiperazine or mCPP) is a psychoactive substance, which is illegal in many countries but can be found on the black market. It induces endocrine, neurological and psychiatric effects. mCPP is a partial agonist at the 5-HT2C receptor but antagonized the 5-HT2B and 5-HT3 receptors. mCPP is also an active metabolite of the drug trazodone, which is used as an effective antidepressant drug with a broad therapeutic spectrum, including anxiolytic efficacy. It is known, that mCPP induces migraine attacks and that the decrease of food intake induced by the mCPP depends on its ability to act as a serotonin agonist is a brain.
Status:
Investigational
Source:
NCT01981395: Phase 1 Interventional Completed Hyperalgesia
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist with inverse agonist activity. Fenobam was previously investigated as an anxiolytic in a number of phase II studies in the early 1980s. These studies revealed a mixed picture of anxiolytic efficacy, with double blind, placebo controlled trials variously reporting the compound as active or inactive. This discrepancy was not easily reconciled based on patient numbers, dose level, duration of treatment, or outcome measures. The positive effects seen in animal models of fragile X syndrome (FXS) treated with fenobam or other mGluR5 antagonists, the apparent lack of clinically significant adverse effects, and the potential beneficial clinical effects seen in this pilot trial support further study of the compound in adults with FXS.
Status:
Investigational
Source:
INN:doxpicomine [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Doxpicomine is the hydrochloride salt of l-3[(dimethylamino)-(m-dioxan-5-yl)methyl]pyridine, a derivative of substituted 1,3 dioxanes. Its analgesic effect appears to be mediated centrally through opiate-like receptors. Preclinical animal studies revealed analgesic activity and duration of action of the same order as that of meperidine and codeine when administered subcutaneously and of codeine but of shorter duration when administered orally. The analgesic effects were reversed by naloxone. The drug did not reduce or antagonize the analgesic effect of morphine. Drowsiness is an expected response to effective analgesics. It was the foremost side effect observed but was of short duration and minimal intensity and did not interfere with the postoperative regimen of coughing, deep breathing, and early ambulation. Nausea and vomiting were not reported after doxpicomine.
Class (Stereo):
CHEMICAL (ACHIRAL)
Thyromedan is a thyroalkanoic acid derivative with hypocholesterolemic activity. In clinical trials, Thyromedan in daily doses of 8 to 32 mg caused a decrease in serum cholesterol levels. The serum total triglycerides and the α- and β-lipoprotein partition of cholesterol and triglycerides were unaffected.
Status:
Investigational
Source:
NCT01981395: Phase 1 Interventional Completed Hyperalgesia
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist with inverse agonist activity. Fenobam was previously investigated as an anxiolytic in a number of phase II studies in the early 1980s. These studies revealed a mixed picture of anxiolytic efficacy, with double blind, placebo controlled trials variously reporting the compound as active or inactive. This discrepancy was not easily reconciled based on patient numbers, dose level, duration of treatment, or outcome measures. The positive effects seen in animal models of fragile X syndrome (FXS) treated with fenobam or other mGluR5 antagonists, the apparent lack of clinically significant adverse effects, and the potential beneficial clinical effects seen in this pilot trial support further study of the compound in adults with FXS.
Class (Stereo):
CHEMICAL (RACEMIC)
Picenadol is a 4-phenylpiperidine derivative and a racemic mixture whose mixed agonist-antagonist properties are a consequence of the d-isomer being a potent opiate agonist, whereas the I-isomer is an opioid antagonist. In the mouse writhing and rat tail heat tests, the analgesic potency of picenadol is estimated to be 1/3 that of morphine. Picenadol itself has weak antagonist activity, whereas the antagonist potency of the l-isomer is approx. 1/10 that of nalorphine. Picenadol has high affinity for both the mu and delta receptors but a markedly lower affinity for the kappa receptor. Extensive pharmacological investigations show picenadol to have a low potential to produce opiate-like side effects, including a low liability for abuse and physical dependence. Antinociceptive properties of picenadol arise from mu agonist actions of the dextrorotatory isomer and that the levorotatory isomer acts to limit the efficacy of the racemate.