U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 401 - 410 of 433 results

Status:
US Previously Marketed
First approved in 1948
Source:
Antistine Phosphate by Ciba
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Antazoline is an antagonist of histamine H1 receptors. It selectively bind to but does not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Antazoline in combination with naphazoline (VASOCON-A®) is indicated to relieve the symptoms of allergic conjunctivitis.
Status:
US Previously Marketed
Source:
Oralator by Smith Kline & French
(1946)
Source URL:
First approved in 1946
Source:
Oralator by Smith Kline & French
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Octodrine is a stimulant that is structurally similar to amphetamine and is included in several so-called “pre-workout” and “fat-burning” supplements. Octodrine, has a history of use as a pharmaceutical drug. It was originally developed in the United States as an aerosolized treatment for bronchitis, laryngitis and other conditions Initially approved by the FDA in 1946 as Eskay’s Oralator, this inhaler appeared only in the 1949 edition of the Physicians’ Desk Reference. Octodrine was combined with several other medications, including theophylline, 3-octopamine, and adenosine, in multi-ingredient tablets sold between the early 1960s through the mid-2000s under the trade names Ambredin, Ordinal, Ordinal Retard and Ordinal Forte. Some proponents say octodrine is a safer alternative to other stimulants like ephedra and Dimethylamylamine (DMAA), but there is no scientific information to support this claim. Originally developed in the early 1950’s as a remedy to nasal congestion and as a possible anti-tumor drug, Octodrine has resurfaced as a key ingredient in dietary supplements for its stimulant and thermogenic benefits.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Procaine is an anesthetic agent indicated for production of local or regional anesthesia, particularly for oral surgery. Procaine (like cocaine) has the advantage of constricting blood vessels which reduces bleeding, unlike other local anesthetics like lidocaine. Procaine is an ester anesthetic. It is metabolized in the plasma by the enzyme pseudocholinesterase through hydrolysis into para-aminobenzoic acid (PABA), which is then excreted by the kidneys into the urine. Procaine acts mainly by inhibiting sodium influx through voltage gated sodium channels in the neuronal cell membrane of peripheral nerves. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is thus inhibited. The receptor site is thought to be located at the cytoplasmic (inner) portion of the sodium channel. Procaine has also been shown to bind or antagonize the function of N-methyl-D-aspartate (NMDA) receptors as well as nicotinic acetylcholine receptors and the serotonin receptor-ion channel complex.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

There has been little to no interest in the biological and/or pharmacological application of lauryl phosphate.
Status:
Possibly Marketed Outside US
Source:
Dexivite by Lifsa Drugs Llc
Source URL:
First approved in 2011

Class (Stereo):
CHEMICAL (ACHIRAL)



Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P) is a coenzyme, the active form of vitamin B6. Pyridoxal 5′-phosphate (PLP) is used as a cofactor for a wide range of enzymes including mitochondrial cysteine desulfurase, cystathionine γ-synthase (CGS), ornithine 4,5-aminomutase (OAM), and d-serine dehydratase. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates. PLP acts as a coenzyme in all transamination reactions, in various beta-elimination reactions, in the condensation reaction in heme synthesis.
Status:
Possibly Marketed Outside US
Source:
Dexivite by Lifsa Drugs Llc
Source URL:
First approved in 2011

Class (Stereo):
CHEMICAL (ACHIRAL)



Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P) is a coenzyme, the active form of vitamin B6. Pyridoxal 5′-phosphate (PLP) is used as a cofactor for a wide range of enzymes including mitochondrial cysteine desulfurase, cystathionine γ-synthase (CGS), ornithine 4,5-aminomutase (OAM), and d-serine dehydratase. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates. PLP acts as a coenzyme in all transamination reactions, in various beta-elimination reactions, in the condensation reaction in heme synthesis.

Showing 401 - 410 of 433 results