{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ATC" in comments (approximate match)
Status:
US Approved Rx
(2021)
Source:
ANDA214554
(2021)
Source URL:
First approved in 1996
Source:
MONUROL by ZAMBON SPA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fosfomycin (marketed under the trade names Monurol and Monuril) is a broad-spectrum antibiotic. Monurol (fosfomycin tromethamine) sachet contains fosfomycin tromethamine, a synthetic, broad spectrum, bactericidal antibiotic for oral administration. Monurol is indicated only for the treatment of uncomplicated urinary tract infections (acute cystitis) in women due to susceptible strains of Escherichia coli and Enterococcus faecalis. Fosfomycin is a phosphoenolpyruvate analogue produced by Streptomyces that irreversibly inhibits enolpyruvate transferase (MurA), which prevents the formation of N-acetylmuramic acid, an essential element of the peptidoglycan cell wall.
Status:
US Approved Rx
(2008)
Source:
ANDA077915
(2008)
Source URL:
First approved in 1996
Source:
NDA020571
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. Irinotecan is sold under the brand name Camptosar among others. CAMPTOSAR is a topoisomerase inhibitor indicated for:
• First-line therapy in combination with 5-fluorouracil and leucovorin for
patients with metastatic carcinoma of the colon or rectum.
• Patients with metastatic carcinoma of the colon or rectum whose disease
has recurred or progressed following initial fluorouracil-based therapy.
Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme
topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand
breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex
and prevent religation of these single-strand breaks. Current research suggests that the
cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis
when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA,
and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand
breaks.
Status:
US Approved Rx
(2015)
Source:
ANDA204812
(2015)
Source URL:
First approved in 1996
Source:
NDA020688
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Olopatadine is an antihistamine (as well as anticholinergic and mast cell stabilizer) used to treat itching associated with allergic conjunctivitis (eye allergies). Olopatadine is a selective histamine H1 antagonist that binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Olopatadine is devoid of effects on alpha-adrenergic, dopamine and muscarinic type 1 and 2 receptors. Some known side effects include a headache (7% of occurrence), eye burning and/or stinging (5%), blurred vision, dry eyes, foreign body sensation, hyperemia, keratitis, eyelid edema, pruritus, asthenia, sore throat (pharyngitis), rhinitis, sinusitis, and taste perversion.
Status:
US Approved Rx
(2016)
Source:
ANDA207631
(2016)
Source URL:
First approved in 1996
Source:
NDA020169
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nilutamide is an antineoplastic hormonal agent primarily used in the treatment of prostate cancer. Nilutamide is a pure, nonsteroidal anti-androgen with affinity for androgen receptors (but not for progestogen, estrogen, or glucocorticoid receptors). Consequently, Nilutamide blocks the action of androgens of adrenal and testicular origin that stimulate the growth of normal and malignant prostatic tissue. Prostate cancer is mostly androgen-dependent and can be treated with surgical or chemical castration. To date, antiandrogen monotherapy has not consistently been shown to be equivalent to castration. The relative binding affinity of nilutamide at the androgen receptor is less than that of bicalutamide, but similar to that of hydroxuflutamide. Nilutamide competes with androgen for the binding of androgen receptors, consequently blocking the action of androgens of adrenal and testicular origin that stimulate the growth of normal and malignant prostatic tissue. This blockade of androgen receptors may result in growth arrest or transient tumor regression through inhibition of androgen-dependent DNA and protein synthesis. Nilutamide is used in combination with surgical castration for the treatment of metastatic prostate cancer involving distant lymph nodes, bone, or visceral organs (Stage D2). Nilutamide is sold under the brand names Nilandron (US), Anandron (CA)).
Status:
US Approved Rx
(2012)
Source:
ANDA202501
(2012)
Source URL:
First approved in 1996
Source:
VISTIDE by GILEAD SCIENCES INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cidofovir is an antiviral nucleotide analogue with significant activity against cytomegalovirus (CMV) and other herpesviruses. Cidofovir suppresses cytomegalovirus (CMV) replication by selective inhibition of viral DNA synthesis. Biochemical data support selective inhibition of CMV DNA polymerase by cidofovir diphosphate, the active intracellular metabolite of cidofovir. Incorporation of cidofovir into the growing viral DNA chain results in reductions in the rate of viral DNA synthesis. Cidofovir is indicated for the treatment of CMV retinitis in patients with acquired immunodeficiency syndrome.
Status:
US Approved Rx
(2012)
Source:
ANDA202200
(2012)
Source URL:
First approved in 1996
Source:
LEVAQUIN by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Levofloxacin is the L-isomer of the racemate, ofloxacin, a quinolone antimicrobial agent. Levofloxacin is used for oral and intravenous administration. Levofloxacin is sold under brand name levaquin and is used to treat infections in adults (≥18 years of age) caused by designated, susceptible bacteria such as, pneumonia: nosocomial and community acquired; skin and skin structure infections: complicated and uncomplicated; chronic bacterial prostatitis; inhalational anthrax. In addition this drug is used to treat plague; urinary tract infections: complicated and uncomplicated; acute pyelonephritis; acute bacterial exacerbation of chronic bronchitis and acute bacterial sinusitis. Levofloxacin, like other fluoroquinolones, inhibits the bacterial DNA gyrase, halting DNA replication. This results in strand breakage on a bacterial chromosome, supercoiling, and resealing. In addition, levofloxacin inhibits a bacterial type II topoisomerase.
Status:
US Approved Rx
(2016)
Source:
ANDA208322
(2016)
Source URL:
First approved in 1996
Source:
DIFFERIN by GALDERMA LABS LP
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Adapalene is a topical retinoid primarily used in the treatment of acne and is used (off-label) to treat keratosis pilaris as well as other skin conditions. Galderma currently markets it under the trade names Differin in some countries, and Adaferin in India. Adapalene acts on retinoid receptors. Biochemical and pharmacological profile studies have demonstrated that adapalene is a modulator of cellular differentiation, keratinization, and inflammatory processes all of which represent important features in the pathology of acne vulgaris. Mechanistically, adapalene binds to specific retinoic acid nuclear receptors but does not bind to the cytosolic receptor protein. Although the exact mode of action of adapalene is unknown, it is suggested that topical adapalene normalizes the differentiation of follicular epithelial cells resulting in decreased microcomedone formation.
Status:
US Approved Rx
(2024)
Source:
ANDA216424
(2024)
Source URL:
First approved in 1996
Source:
NDA050706
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Meropenem (generic name: meropenem hydrate) is a carbapenem antibiotic for injection showing a strong antibacterial activity to a wide range of bacteria strains from Gram-positive bacteria, Gram-negative bacteria to anaerobic bacteria. It is used as single agent therapy for the treatment of the following infections: complicated skin and skin structure infections due to Staphylococcus aureus (b-lactamase and non-b-lactamase producing, methicillin-susceptible isolates only), Streptococcus pyogenes, Streptococcus agalactiae, viridans group streptococci. This drug also used in case of Intra-abdominal Infections for the treatment complicated appendicitis and peritonitis caused by viridans group streptococci, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis, B. thetaiotaomicron, and Peptostreptococcus species. In addition is used the treatment of bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae (b-lactamase and non-b-lactamase-producing isolates), and Neisseria meningitides. The bactericidal activity of meropenem results from the inhibition of cell wall synthesis. Meropenem readily penetrates the cell wall of most Gram-positive and Gram-negative bacteria to reach penicillin-binding-protein (PBP) targets. Its strongest affinities are toward PBPs 2, 3 and 4 of Escherichia coli and Pseudomonas aeruginosa; and PBPs 1, 2 and 4 of Staphylococcus aureus. Meropenem has significant stability to hydrolysis by β-lactamases, both penicillinases and cephalosporinases produced by Gram-positive and Gram-negative bacteria. Meropenem should not be used to treat methicillin-resistant Staphylococcus aureus (MRSA) or methicillin-resistant Staphylococcus epidermidis (MRSE). Meropenem product with such superior effectiveness and safety has been approved for marketing by 100 countries or more in the world (as of March 2004) since its first launch in Italy in 1994.
Status:
US Approved Rx
(2012)
Source:
ANDA078195
(2012)
Source URL:
First approved in 1996
Source:
VIRAMUNE by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nevirapine is a non-nucleoside reverse transcriptase inhibitor (nNRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). HIV-2 RT and eukaryotic DNA polymerases (such as human DNA polymerases alpha, beta, or sigma) are not inhibited by nevirapine. Nevirapine is, in general, only prescribed after the immune system has declined and infections have become evident. It is always taken with at least one other HIV medication such as Retrovir or Videx. The virus can develop resistance to nevirapine if the drug is taken alone, although even if used properly, nevirapine is effective for only a limited time. Nevirapine binds directly to reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by causing a disruption of the enzyme's catalytic site. The activity of nevirapine does not compete with template or nucleoside triphosphates. Nevirapine is used for use in combination with other antiretroviral drugs in the ongoing treatment of HIV-1 infection.
Status:
US Approved Rx
(1996)
Source:
NDA020682
(1996)
Source URL:
First approved in 1996
Source:
NDA020682
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Miglitol, an oral alpha-glucosidase inhibitor, is a desoxynojirimycin derivative that delays the digestion of ingested carbohydrates, thereby resulting in a smaller rise in blood glucose concentration following meals. As a consequence of plasma glucose reduction, miglitol reduce levels of glycosylated hemoglobin in patients with Type II (non-insulin-dependent) diabetes mellitus. Systemic nonenzymatic protein glycosylation, as reflected by levels of glycosylated hemoglobin, is a function of average blood glucose concentration over time. Because its mechanism of action is different, the effect of miglitol to enhance glycemic control is additive to that of sulfonylureas when used in combination. In addition, miglitol diminishes the insulinotropic and weight-increasing effects of sulfonylureas. Miglitol has minor inhibitory activity against lactase and consequently, at the recommended doses, would not be expected to induce lactose intolerance. In contrast to sulfonylureas, miglitol does not enhance insulin secretion. The antihyperglycemic action of miglitol results from a reversible inhibition of membrane-bound intestinal a-glucoside hydrolase enzymes. Membrane-bound intestinal a-glucosidases hydrolyze oligosaccharides and disaccharides to glucose and other monosaccharides in the brush border of the small intestine. In diabetic patients, this enzyme inhibition results in delayed glucose absorption and lowering of postprandial hyperglycemia. Miglitol is used as an adjunct to diet to improve glycemic control in patients with non-insulin-dependent diabetes mellitus (NIDDM) whose hyperglycemia cannot be managed with diet alone.