U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 1075 results

Baricitinib (trade name Olumiant) is an investigational drug for rheumatoid arthritis (RA), being developed by Incyte and Eli Lilly. Baricitinib is a selective JAK1 and JAK2 inhibitor with IC50 of 5.9 nM and 5.7 nM in cell-free assays. In February 2017 Baricitinib was approved for use in the European Union as a second-line therapy for moderate to severe active rheumatoid arthritis in adults, either alone or in combination with methotrexate. On 31 May 2018 FDA approved Barictinib for the treatment of adult patients with moderately to severely active rheumatoid arthritis who have had an inadequate response to one or more TNF antagonist therapies.
Larotrectinib (previously known as ARRY-470 and LOXO-101) is a potent, oral and selective investigational new drug in clinical development for the treatment of patients with cancers that harbor abnormalities involving the tropomyosin receptor kinases (TRKs). Larotrectinib is in phase II clinical trials for the treatment patients with solid tumors, non-Hodgkin lymphoma and for the pediatric patients with advanced solid or primary CNS tumors.
Ivosidenib (AG-120) is an inhibitor of isocitrate dehydrogenase 1 (IDH1) This experimental drug inhibits mutant IDH1, leading to increased differentiation and decreased proliferation in IDH1 positive tumors and thus is thought to be promising for the treatment of IDH1-mutated tumors. In vivo treatment with AG-120 of TF-1 cells, primary human AML patient samples expressing mutant IDH1 and primary human blast cells cultured ex vivo showed that AG-120 is effective at lowering 2-HG levels and restoring cellular differentiation. It showed promising results in a phase I trial in patients with relapsed or refractory acute myeloid leukemia and is being evaluated in Phase III in previously-treated subjects with nonresectable or metastatic cholangiocarcinoma with an IDH1 mutation.
BMN-673 (8R,9S) is the (8R,9S) enantiomer of BMN-673, known as talazoparib. BMN 673 is a novel inhibitor of nuclear enzyme poly (ADP-ribose) polymerase (PARP) with potential antineoplastic activity.
Encorafenib, also known as BRAFTOVI or LGX818, is an orally available mutated BRaf V600E inhibitor with potential antineoplastic activity, which was developed by Novartis. LGX818 possesses selective anti-proliferative and apoptotic activity in cells expressing BRAFV600E. In the A375 (BRAFV600E) human melanoma cell line LGX818 suppresses phospho-ERK (EC50 = 3 nM) leading to potent inhibition of proliferation (EC50 = 4 nM). No significant activity was observed against a panel of 100 kinases (IC50 > 900 nM) and LGX818 did not inhibit proliferation of > 400 cell lines expressing wild-type BRAF. On June 27, 2018, the Food and Drug Administration approved encorafenib and Binimetinib (BRAFTOVI and MEKTOVI, Array BioPharma Inc.) in combination for patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation, as detected by an FDA-approved test. Encorafenib and binimetinib target two different kinases in the RAS/RAF/MEK/ERK pathway. Compared with either drug alone, co-administration of encorafenib and binimetinib result in greater anti-proliferative activity in vitro in BRAF mutation-positive cell lines and greater anti-tumor activity with respect to tumor growth inhibition in BRAF V600E mutant human melanoma xenograft studies in mice. In addition to the above, the combination of encorafenib and binimetinib acted to delay the emergence of resistance in BRAF V600E mutant human melanoma xenografts in mice compared with the administration of either drug alone. Encorafenib is in phase III for Metastatic Colorectal Cancer and in phase II for Relapsed or Refractory Multiple Myeloma.
Gilteritinib, also known as ASP2215, is a potent FLT3/AXL inhibitor, which showed potent antileukemic activity against AML with either or both FLT3-ITD and FLT3-D835 mutations. In in vitro, among the 78 tyrosine kinases tested, Gilteritinib inhibited FLT3, LTK, ALK, and AXL kinases by over 50% at 1 nM with an IC50 value of 0.29 nM for FLT3, approximately 800-fold more potent than for c-KIT, the inhibition of which is linked to a potential risk of myelosuppression. Gilteritinib inhibited the growth of MV4-11 cells, which harbor FLT3-ITD, with an IC50 value of 0.92 nM, accompanied with inhibition of pFLT3, pAKT, pSTAT5, pERK, and pS6. Gilteritinib decreased tumor burden in bone marrow and prolonged the survival of mice intravenously transplanted with MV4-11 cells. In previous preclinical studies, gilteritinib has demonstrated superior antitumor effects when given in combination with AraC and either DNR or IDR compared with combination chemotherapy. In November 2018, the FDA approved gilteritinib for treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) with a FLT3 mutation as detected by an FDA-approved test.
Fostamatinib is a pro-drug of a Syk inhibitor R406 initially developed by Rigel Pharmaceuticals, but then in-licensed by AstraZeneca. It reached phase III of clinical trials for such diseases as Rheumatoid Arthritis and Immune Thrombocytopenic Purpura, however, AstraZeneca decided not to proceed with regulatory filings and return the rights to the compound to Rigel Pharmaceuticals. In 2018 the drug was approved by the FDA for treatment of chronic immune thrombocytopenia. Fostamatinib is being developed for Autoimmune Hemolytic Anemia (phase II), graft versus host disease (phase I) and ovarian cancer (phase I).
Neratinib (HKI-272) is a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is a modified form of the discontinued compound pelitinib, and was originally being develoAdditionally, phase II development of oral neratinib as a neoadjuvant therapy for breast cancer, as a second-line therapy for non-small cell lung cancer, and for other solid tumours is also in progress in numerous countries worldwide. ped by Wyeth (later Pfizer). Oral neratinib is awaiting approval as an extended adjuvant therapy for breast cancer in the EU and in the US. Blocking HER2 function by a small molecule kinase inhibitor, such as neratinib, represents an attractive alternate strategy for the growth inhibition of HER2-positive tumours.
Midostaurin, a derivate of staurosporine (N-benzoylstaurosporine), is a broad-spectrum inhibitor of Ser/Thr and Tyr protein kinases. Midostaurin showed broad antiproliferative activity against various tumor and normal cell lines in vitro and is able to reverse the p-glycoprotein-mediated multidrug resistance of tumor cells in vitro. Midostaurin showed in vivo antitumor activity as single agent and inhibited angiogenesis in vivo. At the end of 2016 FDA granted Priority Review to the PKC412 (midostaurin) new drug application (NDA) for the treatment of acute myeloid leukemia (AML) in newly-diagnosed adults with an FMS-like tyrosine kinase-3 (FLT3) mutation, as well as for the treatment of advanced systemic mastocytosis (SM).
Safinamide (FCE 26743, NW 1015, PNU 151774, PNU 151774E, trade name Xadago) combines potent, selective, and reversible inhibition of MAO-B with blockade of voltage-dependent Na+ and Ca2+ channels and inhibition of glutamate release. Safinamide is under development with Newron, Zambon and Meiji Seika Pharma for the treatment of Parkinson's disease. Safinamide has been launched in the EU, Iceland and Liechtenstein. Safinamide was well tolerated and safe in the clinical development program that demonstrated the amelioration of motor symptoms and OFF phenomena by safinamide when combined with dopamine agonists or levodopa.