{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Anti-Infective Agent[C254]" in comments (approximate match)
Status:
US Approved Rx
(2016)
Source:
NDA208351
(2016)
Source URL:
First approved in 2011
Source:
NDA202022
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Rilpivirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) which is used for the treatment of HIV-1 infections in treatment-naive patients. It is active against wild-type and NNRTI-resistant HIV-1. Rilpivirine is a diarylpyrimidinethat inhibits HIV-1 replication by non-competitive inhibition of HIV-1 reverse transcriptase (RT). Rilpivirine does not inhibit the human cellular DNA polymerases α, β and γ.
Status:
US Approved Rx
(2020)
Source:
NDA213138
(2020)
Source URL:
First approved in 2011
Source:
NDA201699
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Fidaxomicin (trade names Dificid, Dificlir in Europe) is the first in a new class of narrow spectrum macrocyclic antibiotic drugs indicated for treatment of Clostridium difficile-associated diarrhea. Lipiarmycin (fidaxomicin), a metabolite of Actinoplanes deccanensis nov. sp. was first isolated in pure form in 1970s and was considered as antibiotic from its chemical and physico-chemical characteristics. It demonstrated high activity against Gram-positive bacteria, including strains resistant to the medically important antibiotics and protected mice experimentally infected with Streptococcus haemolyticus. Fidaxomicin is non-systemic, meaning it is minimally absorbed into the bloodstream, it is bactericidal, and it has demonstrated selective eradication of pathogenic Clostridium difficile with minimal disruption to the multiple species of bacteria that make up the normal, healthy intestinal flora. Although the exact mechanism of action has yet to be fully elucidated, fidaxomicin may bind to and inhibit bacterial DNA-dependent RNA polymerase, thereby inhibiting the initiation of bacterial RNA synthesis. When orally administered, this agent is minimally absorbed into the systemic circulation, acting locally in the gastrointestinal tract. Fidaxomicin appears to be active against pathogenic Gram-positive bacteria, such as clostridia, enterococci, and staphylococci, but does not appear to be active against other beneficial intestinal bacteria. The maintenance of normal physiological conditions in the colon can reduce the probability of Clostridium difficile infection recurrence. It is marketed by Cubist Pharmaceuticals after acquisition of its originating company Optimer Pharmaceuticals.
Status:
US Approved Rx
(2009)
Source:
NDA022268
(2009)
Source URL:
First approved in 2009
Source:
NDA022268
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Artemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy against malaria. Artemether is rapidly metabolized into an active metabolite dihydroartemisinin (DHA). The antimalarial activity of artemether and DHA has been attributed to endoperoxide moiety. Artemethe involves an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ions, in the acidic parasite food vacuole, which results in the generation of cytotoxic radical species. The generally accepted mechanism of action of peroxide antimalarials involves interaction of the peroxide-containing drug with heme, a hemoglobin degradation byproduct, derived from proteolysis of hemoglobin. This interaction is believed to result in the formation of a range of potentially toxic oxygen and carbon-centered radicals. Other mechanisms of action for artemether include their ability to reduce fever by production of signals to hypothalamus thermoregulatory center. Now, recent research has shown the presence of a new, previously unknown cyclooxygenase enzyme COX-3, found in the brain and spinal cord, which is selectively inhibited by artemether, and is distinct from the two already known cyclooxygenase enzymes COX-1 and COX-2. It is now believed that this selective inhibition of the enzyme COX-3 in the brain and spinal cord explains the ability of artemether in relieving pain and reducing fever which is produced by malaria. The most common adverse reactions in adults (>30%) are headache, anorexia, dizziness, asthenia, arthralgia and myalgia.
Status:
US Approved Rx
(2009)
Source:
NDA022308
(2009)
Source URL:
First approved in 2009
Source:
NDA022308
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Besifloxacin (INN/USAN) is a fourth-generation fluoroquinolone antibiotic. The marketed compound is Besifloxacin hydrochloride. It was developed by SSP Co. Ltd., Japan, and designated SS734. SSP licensed U.S. and European rights to SS734 for ophthalmic use to InSite Vision Incorporated in 2000. InSite Vision developed an eye drop formulation (ISV-403) and conducted preliminary clinical trials before selling the product and all rights to Bausch & Lomb in 2003. Besifloxacin is indicated in the treatment of bacterial conjunctivitis caused by sensitive germs, as well as in the prevention of infectious complications in patients undergoing laser therapy for the treatment of cataracts. Besifloxacin inhibits bacterial DNA gyrase and topoisomerase IV and has a broad spectrum of bactericidal activity against strains commonly isolated from patients with bacterial conjunctivitis. In addition, some exploratory in vitro data suggest that Besifloxacin inhibits cytokine formation in human corneal epithelial cells and monocytes, but the relevance of this finding to therapeutic efficacy is unknown.
Status:
US Approved Rx
(2009)
Source:
NDA022110
(2009)
Source URL:
First approved in 2009
Source:
NDA022110
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
TELAVANCIN (VIBATIV®) is a lipoglycopeptide antibacterial that is a synthetic derivative of vancomycin. It exerts concentration-dependent, bactericidal activity against Gram-positive organisms in vitro. TELAVANCIN (VIBATIV®) inhibits cell wall biosynthesis by binding to late-stage peptidoglycan precursors, including lipid II. It also binds to the bacterial membrane and disrupts membrane barrier function. TELAVANCIN (VIBATIV®) is indicated for the treatment of adult patients with complicated skin and skin structure infections caused by susceptible isolates of the following Gram-positive microorganisms: Staphylococcus aureus (including methicillin-susceptible and -resistant isolates), Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus anginosus group (includes S. anginosus, S. intermedius, and S. constellatus), or Enterococcus faecalis (vancomycin-susceptible isolates only). It is also indicated for the treatment of adult patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP), caused by susceptible isolates of Staphylococcus aureus (both methicillin-susceptible and -resistant isolates). It should be reserved for use when alternative treatments are not suitable.
Status:
US Approved Rx
(2022)
Source:
ANDA215402
(2022)
Source URL:
First approved in 2008
Source:
NDA022187
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Etravirine (formerly known as TMC125) is an antiretroviral agent more specifically classified as a Non-Nucleoside Reverse Transcriptase Inhibitor. Etravirine exerts its effects via direct inhibition of the reverse transcriptase enzyme of human immunodeficiency virus type 1 (HIV-1). It directly binds reverse transcriptase and consequently blocks DNA-dependent and RNA-dependent polymerase activity. In combination with other antiretroviral agents, it is indicated for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in antiretroviral treatment-experienced adult patients, who have evidence of viral replication and HIV-1 strains resistant to a non-nucleoside reverse transcriptase inhibitor (NNRTI) and other antiretroviral agents. The most common adverse events (incidence > 10%) of any intensity that occurred at a higher rate than placebo are rash and nausea. Etravirine should not be co-administered with the following antiretrovirals: Tipranavir/ritonavir, fosamprenavir/ritonavir, atazanavir/ritonavir; Protease inhibitors administered without ritonavir; NNRTIs.
Status:
US Approved Rx
(2023)
Source:
ANDA217114
(2023)
Source URL:
First approved in 2007
Source:
NDA022128
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Maraviroc (UK-427,857; brand-named Selzentry, or Celsentri outside the U.S) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Selzentry, in combination with other antiretroviral agents, is indicated for adult patients infected with only CCR5-tropic HIV-1. This indication is based on analyses of plasma HIV-1 RNA levels in two controlled trials of SELZENTRY in treatment-experienced subjects and one trial in treatment-naive subjects. Maraviroc selectively binds to the human chemokine receptor CCR5 present on the cell membrane, preventing the interaction of HIV-1 gp120 and CCR5 necessary for CCR5-tropic HIV-1 to enter cells. CXCR4-tropic and dual-tropic HIV-1 entry is not inhibited by maraviroc. Antiviral Activity in Cell Culture Maraviroc inhibits the replication of CCR5-tropic laboratory strains and primary isolates of HIV-1 in models of acute peripheral blood leukocyte infection. The mean EC50 value (50% effective concentration) for maraviroc against HIV-1 group M isolates (subtypes A to J and circulating recombinant form AE) and group O isolates ranged from 0.1 to 4.5 nM (0.05 to 2.3 ng per mL) in cell culture. When used with other antiretroviral agents in cell culture, the combination of maraviroc was not antagonistic with NNRTIs (delavirdine, efavirenz, and nevirapine), NRTIs (abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine), or protease inhibitors (amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir). Maraviroc was not antagonistic with the HIV fusion inhibitor enfuvirtide. Maraviroc was not active against CXCR4-tropic and dual-tropic viruses (EC50 value greater than 10 µM). The antiviral activity of maraviroc against HIV-2 has not been evaluated. Maraviroc can cause serious, life-threatening side effects such as, liver problems, skin reactions, and allergic reactions.
Status:
US Approved Rx
(2011)
Source:
NDA203045
(2011)
Source URL:
First approved in 2007
Source:
NDA022145
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Raltegravir (RAL, Isentress, formerly MK-0518) is an antiretroviral drug produced by Merck & Co., used to treat HIV and it is indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection in patients 4 weeks of age and older. Raltegravir inhibits the catalytic activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required r viral replication. Inhibition of integrase prevents the covalent insertion, or integration, of unintegrated linear HIV-1 DNA into the host cell genome preventing the formation of the HIV-1 provirus. The provirus is required to direct the production of progeny virus, so inhibiting integration prevents propagation of the viral infection. Raltegravir did not significantly inhibit human phosphoryl transferases including DNA polymerases α, β, and γ. Coadministration with others drugs that are strong inducers of UGT1A1, such as rifampin, may result in reduced plasma concentrations of raltegravir. The most common adverse reactions of moderate to severe intensity (≥2%) are insomnia, headache, dizziness, nausea and fatigue. Severe, potentially life-threatening, and fatal skin reactions have been reported. This include cases of Stevens-Johnson syndrome and toxic epidermal necrolysis. Hypersensitivity reactions have also been reported and were characterized by rash, constitutional findings, and sometimes, organ dysfunction, including hepatic failure. The major mechanism of clearance of raltegravir in humans is UGT1A1-mediated glucuronidation.
Status:
US Approved Rx
(2023)
Source:
ANDA217553
(2023)
Source URL:
First approved in 2006
Source:
NDA022027
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Posaconazole is a triazole antifungal drug that is used to treat invasive infections by Candida species and Aspergillus species in severely immunocompromised patients. It marketed in the United States, the European Union, and in other countries by Schering-Plough under the trade name Noxafil. Noxafil is used for prophylaxis of invasive Aspergillus and Candida infections in patients, 13 years of age and older, who are at high risk of developing these infections due to being severely immunocompromised as a result of procedures such as hematopoietic stem cell transplant (HSCT) recipients with graft-versus-host disease (GVHD), or due to hematologic malignancies with prolonged neutropenia from chemotherapy. Also for the treatment of oropharyngeal candidiasis, including oropharyngeal candidiasis refractory to itraconazole and/or fluconazole. Posaconazole blocks the synthesis of ergosterol, a key component of the fungal cell membrane, through the inhibition of cytochrome P-450 dependent enzyme lanosterol 14α-demethylase responsible for the conversion of lanosterol to ergosterol in the fungal cell membrane. This results in an accumulation of methylated sterol precursors and a depletion of ergosterol within the cell membrane thus weakening the structure and function of the fungal cell membrane. This may be responsible for the antifungal activity of posaconazole. It is absorbed within three to five hours and predominately eliminated through the liver, and has a half-life of about 35 hours. Oral administration of posaconazole taken with a high-fat meal exceeds 90% bioavailability and increases the concentration by four times compared to fasting state.
Status:
US Approved Rx
(2006)
Source:
NDA021632
(2006)
Source URL:
First approved in 2006
Source:
NDA021632
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Anidulafungin (brand names Eraxis (in U.S. and Russia) and Ecalta (in Europe)) is a semi-synthetic echinocandin with antifungal activity and it is active in vitro against many Candida, as well as some Aspergillus. Like other echinocandins, anidulafungin is not active against Cryptococcus neoformans, Trichosporon, Fusarium, or zygomycetes. This drug is indicated for the treatment of candidemia and the following Candida infections: intra-abdominal abscess and peritonitis; and for the treatment of esophageal candidiasis. Anidulafungin inhibits glucan synthase, an enzyme present in fungal, but not mammalian cells. This results in inhibition of the formation of 1,3--D-glucan, an essential component of the fungal cell wall.