U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 120 results

Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) is the synthetic antimicrobial agent for oral or intravenous administration. Ciprofloxacin is a member of the fluoroquinolone class of antibacterial agents. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. Ciprofloxacin is used to treat a wide variety of infections, including infections of bones and joints, endocarditis, gastroenteritis, malignant otitis externa, respiratory tract infections, cellulitis, urinary tract infections, prostatitis, anthrax, and chancroid. In the United States, ciprofloxacin is pregnancy category C. This category includes drugs for which no adequate and well-controlled studies in human pregnancy exist, and for which animal studies have suggested the potential for harm to the fetus, but potential benefits may warrant use of the drug in pregnant women despite potential risks. Fluoroquinolones have been reported as present in a mother's milk and thus passed on to the nursing child. Oral and intravenous ciprofloxacin is approved by the FDA for use in children for only two indications due to the risk of permanent injury to the musculoskeletal system: Inhalational anthrax (postexposure) and Complicated urinary tract infections and pyelonephritis due to Escherichia coli.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (RACEMIC)



Terconazole is an antifungal drug used to treat vaginal yeast infection. Terconazole may exert its antifungal activity by disrupting normal fungal cell membrane permeability. Terconazole and other triazole antifungal agents inhibit cytochrome P450 "14-alpha-demethylase" in susceptible fungi, which leads to the accumulation of lanosterol and other methylated sterols and a decrease in ergosterol concentration. Depletion of ergosterol in the membrane disrupts the structure and function of the fungal cell leading to a decrease or inhibition of fungal growth. During controlled clinical studies conducted in the United States, 521 patients with vulvovaginal candidiasis were treated with terconazole 0.4% vaginal cream. Based on comparative analyses with placebo, the adverse experiences considered most likely related to terconazole 0.4% vaginal cream were a headache and body pain. Fever and chills, vulvovaginal burning, itching, and irritation have also been reported. The adverse drug experience on terconazole most frequently causing discontinuation was vulvovaginal itching.
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Sulconazole (trade name Exelderm) is an antifungal medication of the imidazole class. Sulconazole has a broad spectrum of antifungal activity in vitro and has been shown to be an effective topical antifungal agent for the management of superficial fungal infections of the skin, particularly dermatophytosis and tinea versicolor. Sulconazole inhibits the cytochrome P-450 isoenzyme, C-14-alpha-demethylase by binding to the heme iron of the enzyme. This results in a largely fungistatic effect. The selectivity of azole antifungal agents for pathogenic organisms compared with mammalian cells appears to depend on a preferred affinity of these drugs for fungal versus mammalian cytochrome P-450 sterol demethylases. Enzyme inhibition by sulconazole prevents the synthesis of ergosterol, a sterol found in fungal cell membranes but, in general, not in mammalian cell membranes. Additionally, lanosterol accumulates, which changes membrane permeability, cell volume, secondary metabolic effects, and causes defective cell division and growth inhibition. As sulconazole is primarily fungistatic, an intact immune system may be needed for infection resolution.In selected situations, sulconazole may have growth phase-dependent fungicidal activity against very susceptible organisms. The 1% concentration of sulconazole may greatly exceed the minimum inhibitory concentration and exert a direct physiochemical effect on the fungal cell membrane. The fungicidal effect may be due to hydrophobic interactions between sulconazole and unsaturated fatty acids in the membrane. Mammalian cells generally have little or no unsaturated fatty acids. Sulconazole may also prevent DNA and RNA synthesis and increase their degradation.Sulconazole has activity against many dermatophytes and yeast. One measure of the drug's antifungal activity is the relative inhibition factor (RIF). The RIF approaches 0% for a drug to which a fungus is highly sensitive and 100% for a drug that is non-inhibitory. The RIF values of sulconazole for Candida species, Aspergillus species, and dermatophytes are broadly similar to those of clotrimazole, econazole, ketoconazole, miconazole, and tioconazole. The mean RIF values were 69% (30—98%) for Candida species, 71% (61—82%) for Aspergillus species, and 12% (5—18%) for dermatophytes. Sulconazole is available as a cream or solution to treat skin infections such as athlete's foot, ringworm, jock itch, and sun fungus.
Status:
First approved in 1985

Class (Stereo):
CHEMICAL (RACEMIC)



Butoconazole, trade names Gynazole-1, an imidazole antifungal used in gynecology for the local treatment of vulvovaginal candidiasis (infections caused by Candida). The exact mechanism of the antifungal action of butoconazole nitrate is unknown; however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell.
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Quazepam is indicated for the treatment of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Quazepam interact preferentially with the benzodiazepine-1 (BZ1) receptors. Most common adverse reactions (>1%): drowsiness, headache, fatigue, dizziness, dry mouth, dyspepsia. Downward of CAN depressant dose adjustment may be necessary due to additive effects.
Imipenem is a beta-lactam antibiotic belongings to the subgroup of carbapenems. Imipenem has a broad spectrum of activity against aerobic and anaerobic Gram positive as well as Gram negative bacteria. It is particularly important for its activity against Pseudomonas aeruginosa and the Enterococcus species. Imipenem is rapidly degraded by the renal enzyme dehydropeptidase when administered alone, and is always co-administered with cilastatin to prevent this inactivation. The bactericidal activity of imipenem results from the inhibition of cell wall synthesis. Its greatest affinity is for penicillin binding proteins (PBPs) 1A, 1B, 2, 4, 5 and 6 of Escherichia coli, and 1A, 1B, 2, 4 and 5 of Pseudomonas aeruginosa. The lethal effect is related to binding to PBP 2 and PBP 1B. Imipenem is marketed under the brand name Primaxin. PRIMAXIN I.M. (Imipenem and Cilastatin for Injectable Suspension) is a formulation of imipenem (a thienamycin antibiotic) and cilastatin sodium (the inhibitor of the renal dipeptidase, dehydropeptidase I). PRIMAXIN I.M. is a potent broad spectrum antibacterial agent for intramuscular administration.