U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 10251 results

ODM-201 (also known as BAY-1841788) is a non-steroidal antiandrogen, specifically, a full and high-affinity antagonist of the androgen receptor (AR), that is under development by Orion and Bayer HealthCare for the treatment of advanced, castration-resistant prostate cancer (CRPC). ODM-201 appears to negligibly cross the blood-brain-barrier. This is beneficial due to the reduced risk of seizures and other central side effects from off-target GABAA receptor inhibition that tends to occur in non-steroidal antiandrogens that are structurally similar to enzalutamide. Moreover, in accordance with its lack of central penetration, ODM-201 does not seem to increase testosterone levels in mice or humans, unlike other non-steroidal antiandrogens. Another advantage is that ODM-201 has been found to block the activity of all tested/well-known mutant ARs in prostate cancer, including the recently-identified clinically-relevant F876L mutation. ODM-201 has been studied in phase I and phase II clinical trials and has thus far been found to be effective and well-tolerated, with the most commonly reported side effects including fatigue, nausea, and diarrhea. No seizures have been observed.
Zanubrutinib (formerly known as BGB-3111) was developed by BeiGene as a small-molecule inhibitor of Bruton's tyrosine kinase (BTK). The drug forms a covalent bond with a cysteine residue in the BTK active site, leading to inhibition of BTK activity. BTK signaling results in activation of pathways necessary for B-cell proliferation, trafficking, chemotaxis, and adhesion, thus Zanubrutinib inhibits malignant B-cell proliferation and reduces tumor growth. Zanubrutinib was granted accelerated approval by the FDA in November 2019 based on clinical trial results that demonstrated an 84% overall response rate from zanubrutinib therapy in patients with mantle cell lymphoma (MCL). On August 31, 2021, the Food and Drug Administration approved zanubrutinib for adult patients with Waldenström’s macroglobulinemia (WM).
Entrectinib (previously known as RXDX-101, NMS-E628) is an investigational drug, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Entrectinib (RXDX-101) is a selective inhibitor for all three Trk receptor tyrosine kinases encoded by the three NTRK genes, as well as the ROS1 and ALKreceptor tyrosine kinases.This investigational drug is active at low nanomolar concentrations, allowing for once-daily oral administration to patients whose tumors have been shown to have gene rearrangements in NTRK, ROS1, or ALK. Nerviano Medical Sciences, the original sponsor for entrectinib (formerly referred to as NMS-1191372), initiated the first-in-human Phase 1 study ALKA-372-001 in Italy in October 2012. The study is currently ongoing in Italy. Entrectinib is currently being tested in a global phase 2 basket clinical trial called STARTRK-2. In the U.S., entrectinib has orphan drug designation and rare pediatric disease designation for the treatment of neuroblastoma and orphan drug designation for treatment of TrkA-, TrkB-, TrkC-, ROS1- and ALK-positive non-small cell lung cancer (NSCLC) and metastatic colorectal cancer (mCRC).

Class (Stereo):
CHEMICAL (ABSOLUTE)

Ubrogepant, a small molecule drug, is being developed by Merck & Co for the treatment of migraine. The calcitonin gene-related peptide receptor (CGRP) antagonist is administered orally as a film coated tablet. Ubrogepant is a competitive antagonist with high affinity, potency, and selectivity for the human CGRP receptor. In the four clinical studies (ACHIEVE I, ACHIEVE II, UBR-MD-04 and 3110-105-002) ubrogepant demonstrated efficacy, safety and tolerability in the acute treatment of migraine among a broad patient population, including those who had an insufficient response to a triptan or those patients in whom triptans were contraindicated, as well as in patients who had moderate to severe CV risk profile.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pretomanid (PA-824) is an experimental anti-tuberculosis drug. Pretomanid is a bicyclic nitroimidazole-like molecule with a very complex mechanism of action. It is active against both replicating and hypoxic, non-replicating Mycobacterium tuberculosis. As a potential TB therapy, it has many attractive characteristics - most notably its novel mechanism of action, its activity in vitro against all tested drug-resistant clinical isolates, and its activity as both a potent bactericidal and a sterilizing agent in mice. In addition, the compound shows no evidence of mutagenicity in a standard battery of genotoxicity studies, no significant cytochrome P450 interactions, and no significant activity against a broad range of Gram-positive and Gram-negative bacteria. This compound has been developed by TB Alliance and is a potential cornerstone of future TB and drug-resistant TB treatment regimens. It is currently undergoing Phase III clinical trials.
Pexidartinib (PLX3397) is a small-molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Pexidartinib binds to and inhibits phosphorylation of stem cell factor receptor (KIT), colony-stimulating factor-1 receptor (CSF1R) and FMS-like tyrosine kinase 3 (FLT3), which may result in the inhibition of tumor cell proliferation and down-modulation of macrophages, osteoclasts and mast cells involved in the osteolytic metastatic disease. FDA has granted Breakthrough Therapy Designation to pexidartinib (PLX3397) for the treatment of tenosynovial giant cell tumor (TGCT) where surgical removal of the tumor would be associated with potentially worsening functional limitation or severe morbidity. In addition to Breakthrough Therapy Designation, pexidartinib (PLX3397) has been granted Orphan Drug Designation by FDA for the treatment of pigmented villonodular synovitis (PVNS) and giant cell tumor of the tendon sheath (GCT-TS). It also has received Orphan Designation from the European Commission for the treatment of TGCT.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Baloxavir or Baloxavir acid was developed by Shionogi and Co., Ltd as a selective inhibitor of the cap-dependent endonuclease (CEN) activity. CEN resides in the PA subunit of the influenza virus and mediates the critical "cap-snatching" step of viral RNA transcription. Thus Baloxavir can inhibit the influenza virus replication and now this drug is under investigation in clinical trial NCT04327791 (Combination Therapy With Baloxavir and Oseltamavir 1 for Hospitalized Patients With Influenza).
Bictegravir is a component of the fixed-dose combination product bictegravir/emtricitabine/tenofovir alafenamide (BIKTARVY®), which received marketing approval for the treatment of human immunodeficiency virus (HIV) infection by the U.S. Food and Drug Administration in February 2018. Bictegravir inhibits the strand transfer activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required for viral replication. Inhibition of integrase prevents the integration of linear HIV-1 DNA into host genomic DNA, blocking the formation of the HIV-1 provirus and propagation of the virus.
Encorafenib, also known as BRAFTOVI or LGX818, is an orally available mutated BRaf V600E inhibitor with potential antineoplastic activity, which was developed by Novartis. LGX818 possesses selective anti-proliferative and apoptotic activity in cells expressing BRAFV600E. In the A375 (BRAFV600E) human melanoma cell line LGX818 suppresses phospho-ERK (EC50 = 3 nM) leading to potent inhibition of proliferation (EC50 = 4 nM). No significant activity was observed against a panel of 100 kinases (IC50 > 900 nM) and LGX818 did not inhibit proliferation of > 400 cell lines expressing wild-type BRAF. On June 27, 2018, the Food and Drug Administration approved encorafenib and Binimetinib (BRAFTOVI and MEKTOVI, Array BioPharma Inc.) in combination for patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation, as detected by an FDA-approved test. Encorafenib and binimetinib target two different kinases in the RAS/RAF/MEK/ERK pathway. Compared with either drug alone, co-administration of encorafenib and binimetinib result in greater anti-proliferative activity in vitro in BRAF mutation-positive cell lines and greater anti-tumor activity with respect to tumor growth inhibition in BRAF V600E mutant human melanoma xenograft studies in mice. In addition to the above, the combination of encorafenib and binimetinib acted to delay the emergence of resistance in BRAF V600E mutant human melanoma xenografts in mice compared with the administration of either drug alone. Encorafenib is in phase III for Metastatic Colorectal Cancer and in phase II for Relapsed or Refractory Multiple Myeloma.
Brilliant Blue G is triphenylmethane dye that was developed for use in the textile industry but is now commonly used for staining proteins in analytical biochemistry. The Bradford assay is a standard, rapid dye-binding assay that uses Brilliant Blue G to quantify the amount of protein in a solution. Brilliant Blue G also acts as a selective inhibitor of the P2X purinoceptor channel P2X7 (IC50s = 10.1 and 265 nM for rat and human P2X7, respectively). In mice, it inhibits interleukin-1β expression and reduces neurological injury secondary to traumatic brain injury. Brilliant Blue G was used to prepare the protein reagent for the determination of protein content of the collagenase enzyme isolated from fish waste. It may be employed as a stain for the internal limiting membrane (ILM) for the macular hole (MH) and epiretinal membrane (ERM) surgery.