U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 3951 - 3960 of 4700 results

Salmeterol is a long-acting beta2-adrenergic agonist. Although beta2-adrenoceptors are the predominant adrenergic receptors in bronchial smooth muscle and beta1-adrenoceptors are the predominant receptors in the heart, there are also beta2-adrenoceptors in the human heart comprising 10% to 50% of the total beta-adrenoceptors. The precise function of these is not yet established, but they raise the possibility that even highly selective beta2-agonists may have cardiac effects. It is FDA approved for the treatment of asthma, prevention of exercise-induced bronchospasm, maintenance treatment of chronic obstructive pulmonary disease. Common adverse reactions include musculoskeletal pain, headache, influenza, nasal/sinus congestion, pharyngitis, rhinitis, tracheitis/bronchitis, cough, throat irritation, viral respiratory infection. Salmeterol should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors or tricyclic antidepressants, or within 2 weeks of discontinuation of such agents, because the action of salmeterol on the vascular system may be potentiated by these agents. Coadministration of salmeterol and ketoconazole was associated with more frequent increases in QTc duration compared with salmeterol and placebo administration.
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Status:
First approved in 1994

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Vinorelbine (trade name Navelbine) is a semi-synthetic vinca-alkaloid with a broad spectrum of anti-tumour activity. Vinorelbine is a mitotic spindle poison that impairs chromosomal segregation during mitosis. It blocks cells at G2/M. Microtubules (derived from polymers of tubulin) are the principal target of vinorelbine. Vinorelbine was developed by Pierre Fabre under licence from the CNRS in France. NAVELBINE (vinorelbine tartrate) as a single agent or in combination is indicated for the first line treatment of non small cell lung cancer and advanced breast cancer.
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.

Showing 3951 - 3960 of 4700 results