U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 38661 - 38670 of 39585 results

Status:
Possibly Marketed Outside US
First approved in 1955
Source:
Clorpactin WCS-90 by United-Guardian, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Inorganic pyrophosphate (PPi ) has long been known as a by-product of many intracellular biosynthetic reactions. PPi plays the regulatory role in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi is used as a biochemical energy source instead of ATP especially in bacteria, protists, and plants. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Sodium, potassium and calcium pyrophosphates (E450) are used as food additives as buffers and emulsifiers.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:ERYTHROSINE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Erythrosine B (also known as Red No. 3), a Food and Drug Administration (FDA)-approved red food dye, is found in cosmetics and food. It is also used as a plasma stain for nerve cells and staining bacteria in soil. It was studied the modulating capabilities of erythrosine B on amyloid-beta peptide (Aβ) aggregation and Aβ-associated impaired neuronal cell function. It is known, that aggregation Aβ is closely linked to the development of Alzheimer's disease pathology.
Status:
Possibly Marketed Outside US
Source:
Canada:ERYTHROSINE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Erythrosine B (also known as Red No. 3), a Food and Drug Administration (FDA)-approved red food dye, is found in cosmetics and food. It is also used as a plasma stain for nerve cells and staining bacteria in soil. It was studied the modulating capabilities of erythrosine B on amyloid-beta peptide (Aβ) aggregation and Aβ-associated impaired neuronal cell function. It is known, that aggregation Aβ is closely linked to the development of Alzheimer's disease pathology.
Status:
Possibly Marketed Outside US
Source:
Canada:ETHYL PARABEN
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Ethylparaben is produced naturally and found in several fruits and insects, where it acts as an antimicrobial agent. Ethylparaben is mainly used as antiseptics in cosmetics, food and medicine (E number E214). It is also can be used as feed preservatives and antiseptic for bacteria. Ethylparaben is readily absorbed from the gastrointestinal tract or through the skin. It is hydrolyzed to p-hydroxybenzoic acid and rapidly excreted in urine without accumulating in the body. Under the Federal Food, Drug, and Cosmetic Act (FD&C Act), cosmetic products and ingredients, other than color additives, do not need FDA approval before they go on the market. Broad concentration ranges reported in each product category in 1981 were < 0.1% and > 0.1% to 1%. Studies show the in vivo estrogenicity of MP and EP at human exposure levels, and indicate that populations exposed to large amounts of MP and EP may have a high burden of estrogenicity-related diseases.

Showing 38661 - 38670 of 39585 results