{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m didanosine
to a specific field?
Status:
Investigational
Source:
NCT02294266: Phase 1 Interventional Completed Amphetamine-Related Disorders
(2014)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine belonging to the family of synthetic cathinones, an emerging class of designer drugs known for their hallucinogenic and psychostimulant properties as well as for their abuse potential. Mephedrone is a stimulant of dopamine (DA) release and blocks its reuptake through its interaction with the dopamine transporter. Furthermore, it has some affinity for various 5-hydroxytryptamine (5-HT) receptor subtypes. Neurotoxic effect of mephedrone on 5-HT and DA systems remains controversial. Although some studies in animal models reported no damage to DA nerve endings in the striatum and no significant changes in brain monoamine levels, some others suggested a rapid reduction in 5-HT and DA transporter function. Persistent serotonergic deficits were observed after binge like treatment in a warm environment and in both serotonergic and dopaminergic nerve endings at high ambient temperature. Oxidative stress cytotoxicity and an increase in frontal cortex lipid peroxidation were also reported. Despite the re-classification of mephedrone as a Class B restricted substance by the United Kingdom and restrictive legislation by the United States, international policy regarding mephedrone control is still developing and interest in synthetic amphetamine-like drugs could drive the development of future mephedrone analogues.
Status:
Investigational
Source:
INN:florbenguane (<SUP>18</SUP>F) [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
LADARIXIN is a dual inhibitor of chemokine receptors CXCR1 and CXCR2. It inhibits human polymorphonuclear leukocyte (PMN) migration to chemokine CXCL8 in vitro and prevents PMN infiltration and tissue damage in several models of cerebral ischemia/reperfusion in vivo. It is under development for the treatment of type 1 diabetes.
Status:
Investigational
Source:
INN:edasalonexent [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
CAT-1004 (Edasalonexent)is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. Structurally CAT-1004 represents covalently links salicylic acid and docosahexaenoic acid -- two compounds known to inhibit NF-κB. . In a Phase 1 study in adults, NF-κB activity in peripheral mononuclear cells was inhibited following a single dose of edasalonexent but not by equimolar doses of salicylic acid and docosahexaenoic acid. Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy, which occurs early in the disease process and precedes loss of muscle function. Salicylic acid prevents NF-κB mediated muscle atrophy and decreases protein catabolism in muscle. Docosahexaenoic acid has been shown to upregulate anti-inflammatory pathways and suppress pro-inflammatory pathways via modulation of NF-κB activity. Edasalonexent is endocytosed and hydrolyzed by intracellular fatty acid amide hydrolase (FAAH) to release salicylic acid and DHA in the intracellular compartment, thus having a potential advantage of selectively delivering higher doses in target muscle cells where FAAH is abundant.
Status:
Investigational
Source:
JAN:PEVONEDISTAT HYDROCHLORIDE [JAN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pevonedistat (MLN4924), discovered by Millennium, is a small molecule inhibitor of the NEDD8-Activating Enzyme (NAE), a key component of the protein homeostasis pathway. MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. This drug is in phase II clinical trial for the treatment acute myeloid leukemia, chronic myelomonocytic leukemia and myelodysplastic syndromes. In addition in phase I for treatment acute lymphoblastic leukemia. The ability of MLN4924 to cross the blood-brain barrier, its low toxicity, and clinical efficacy in other cancers suggests that this drug is an attractive treatment against glioblastomas.
Status:
Investigational
Source:
NCT02234986: Phase 2 Interventional Completed Advanced Adult Hepatocellular Carcinoma
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
ENMD-2076 is an orally-active, Aurora A/angiogenic kinase inhibitor. urora kinases are key regulators of mitosis (cell division), and are often over-expressed in human cancers. ENMD-2076 also targets the VEGFR, Flt-3 and FGFR3 kinases, which have been shown to play important roles in the pathology of several cancers. ENMD-2076 is tested in phase 2 clinical trials against ovarian cancer, breast cance, hepatocellular carcinoma and other malignancies.
Status:
Investigational
Source:
NCT03417817: Not Applicable Interventional Completed Gastroesophageal Reflux
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) is an organic compound mainly used as a broad spectrum, nonsystemic fungicide, with other uses as a wood protectant, pesticide, acaricide, and to control mold, mildew, bacteria, algae. Chlorothalonil reduces fungal intracellular glutathione molecules to alternate forms which cannot participate in essential enzymatic reactions, ultimately leading to cell death. Chlorothalonil is slightly toxic to mammals, but it can cause severe eye and skin irritation in certain formulations. Very high doses may cause a loss of muscle coordination, rapid breathing, nose bleeding, vomiting, and hyperactivity. Dermatitis, vaginal bleeding, bright yellow and/or bloody urine, and kidney tumors may also occur, followed by death. In a number of tests of varying lengths of time, rats which were fed a range of doses of chlorothalonil generally showed no effects on physical appearance, behavior, or survival. Kidney changes such as kidney enlargement were common. In the US, chlorothalonil is used predominantly on peanuts (about 34% of usage), potatoes (about 12%), and tomatoes (about 7%), though the EPA recognizes its use on many other crops. It is also used on golf courses and lawns (about 10%) and as a preservative additive in some paints (about 13%), resins, emulsions, and coatings. Chlorothalonil is commercially available in many different formulations and delivery methods. It is applied as a dust, dry or water-soluble grains, a wettable powder, a liquid spray, a fog, and a dip. It may be applied by hand, by ground sprayer, or by aircraft
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
PU-H71 is experimental inhibitor of Hsp90. It is being tested in clinical trials against lymphoma and solid tumors.
Status:
Class (Stereo):
CHEMICAL (ACHIRAL)
Thimerfonate is a alkyl mercuric derivative with germicidal activity.
Status:
Investigational
Source:
NCT02267863: Phase 1 Interventional Terminated Acute Myelogenous Leukemia in Relapse
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
APTO-253 is a novel small molecule that can induce expression of the genes that code for the Krüppel-like factor 4 (KLF4) master transcription factor and for the p21 cell cycle inhibitor protein, and can inhibit expression of the c-Myc oncogene, leading to cell cycle arrest and programmed cell death (apoptosis) in human-derived solid tumor and hematologic cancer cells. A Phase 1 study with APTO-253 was completed and demonstrated modest clinical activity in patients with colon cancer, acute leukemia, myelodysplastic syndrome, hematological malignancies and non-small cell lung cancers.