{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m clopidogrel
to a specific field?
Status:
US Approved Rx
(2011)
Source:
NDA022497
(2011)
Source URL:
First approved in 1985
Source:
WELLBUTRIN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Bupropion, an antidepressant of the aminoketone class and a non-nicotine aid to smoking cessation, is chemically unrelated to tricyclic, tetracyclic, selective serotonin re-uptake inhibitor, or other known antidepressant agents. Compared to classical tricyclic antidepressants, Bupropion is a relatively weak inhibitor of the neuronal uptake of norepinephrine, serotonin, and dopamine. In addition, Bupropion does not inhibit monoamine oxidase. Bupropion produces dose-related central nervous system (CNS) stimulant effects in animals, as evidenced by increased locomotor activity, increased rates of responding in various schedule-controlled operant behavior tasks, and, at high doses, induction of mild stereotyped behavior. Bupropion is marketed as Wellbutrin, Zyban, and generics. Bupropion is indicated for the treatment of major depressive disorder (MDD). WELLBUTRIN, WELLBUTRIN SR, and
WELLBUTRIN XL are not approved for smoking cessation treatment, but bupropion under the name ZYBAN is approved for this use.
Status:
US Approved Rx
(1995)
Source:
ANDA074007
(1995)
Source URL:
First approved in 1984
Source:
SECTRAL by PROMIUS PHARMA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. Acebutolol is marketed under the trade names Sectral, Prent. Acebutolol is indicated for the management of hypertension in adults. It may be used alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. Acebutolol is also indicated in the management of ventricular premature beats; it reduces the total number of premature beats, as well as the number of paired and multiform ventricular ectopic beats, and R-on-T beats. Acebutolol is a selective β1-receptor antagonist. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Acebutolol blocks these receptors, lowering the heart rate and blood pressure. This drug then has the reverse effect of epinephrine. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels.
Status:
US Approved Rx
(2009)
Source:
ANDA091019
(2009)
Source URL:
First approved in 1983
Source:
CHENIX by LEADIANT BIOSCI INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Chenodiol is the non-proprietary name for chenodeoxycholic acid, a naturally occurring human bile acid. It is a bitter-tasting white powder consisting of crystalline and amorphous particles freely soluble in methanol, acetone and acetic acid and practically insoluble in water. Chenodiol suppresses hepatic synthesis of both cholesterol and cholic acid, gradually replacing the latter and its metabolite, deoxycholic acid in an expanded bile acid pool. These actions contribute to biliary cholesterol desaturation and gradual dissolution of radiolucent cholesterol gallstones in the presence of a gall-bladder visualized by oral cholecystography. Bile acids may also bind the the bile acid receptor (FXR) which regulates the synthesis and transport of bile acids. Chenodiol is indicated for patients with radiolucent stones in well-opacifying gallbladders, in whom selective surgery would be undertaken except for the presence of increased surgical risk due to systemic disease or age. The likelihood of successful dissolution is far greater if the stones are floatable or small. For patients with nonfloatable stones, dissolution is less likely and added weight should be given to the risk that more emergent surgery might result form a delay due to unsuccessful treatment.
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(2005)
Source:
ANDA076973
(2005)
Source URL:
First approved in 1982
Source:
ACLOVATE by FOUGERA PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Alclometasone is synthetic glucocorticoid steroid for topical use. Alclometasone dipropionate cream USP and alclometasone dipropionate ointment USP are indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. It may be used in pediatric patients 1 year of age or older, although the safety and efficacy of drug use for longer than 3 weeks have not been established. Like other topical corticosteroids, alclometasone dipropionate has anti-inflammatory, antipruritic, and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of the topical steroids, in general, is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Alclometasone initially binds the corticosteroid receptor. This complex migrates to the nucleus where it binds to different glucocorticoid response elements on the DNA. This in turn enhances and represses various genes, especially those involved in inflammatory pathways.
Status:
US Approved Rx
(2020)
Source:
ANDA204852
(2020)
Source URL:
First approved in 1981
Source:
DESYREL by PRAGMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Trazodone (brand name Oleptro, Desyrel, etc) is a serotonin uptake inhibitor that is used as an antidepressive agent. Trazodone binds to the 5-HT2 receptor, it acts as a serotonin agonist at high doses and a serotonin antagonist at low doses. Like fluoxetine, trazodone's antidepressant activity likely results from blockage of serotonin reuptake by inhibiting serotonin reuptake pump at the presynaptic neuronal membrane. If used for long time periods, postsynaptic neuronal receptor binding sites may also be affected. The sedative effect of trazodone is likely the result of alpha-adrenergic blocking action and modest histamine blockade at the H1 receptor. It weakly blocks presynaptic alpha2-adrenergic receptors and strongly inhibits postsynaptic alpha1 receptors. Trazodone does not affect the reuptake of norepinephrine or dopamine within the CNS. Because of its lack of anticholinergic side effects, trazodone is especially useful in situations in which antimuscarinic effects are particularly problematic (e.g., in patients with benign prostatic hyperplasia, closed-angle glaucoma, or severe constipation). Trazodone's propensity to cause sedation is a dual-edged sword. For many patients, the relief from agitation, anxiety, and insomnia can be rapid; for other patients, including those individuals with considerable psychomotor retardation and feelings of low energy, therapeutic doses of trazodone may not be tolerable because of sedation. Trazodone elicits orthostatic hypotension in some patients, probably as a consequence of α1-adrenergic receptor blockade. Mania has been observed in association with trazodone treatment, including in patients with bipolar disorder, as well as in patients with previous diagnoses of major depression. Compared to the reversible MAOI antidepressant drug moclobemide, significantly more impairment of vigilance occurs with trazodone.
Status:
US Approved Rx
(2017)
Source:
ANDA206224
(2017)
Source URL:
First approved in 1981
Source:
NDA021457
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Albuterol is a short acting beta2-adrenergic receptor agonist. Albuterol effectively alleviates bronchospasm due to bronchial asthma, chronic bronchitis, and other chronic bronchopulmonary disorders such as COPD. In vitro studies and in vivo pharmacologic studies have demonstrated that albuterol has a preferential effect on beta2-adrenergic receptors compared with isoproterenol. While it is recognized that beta2-adrenergic receptors are the predominant receptors in bronchial smooth muscle, data indicate that there is a population of beta2-receptors in the human heart existing in a concentration between 10% and 50%. The precise function of these receptors has not been established. The pharmacologic effects of beta-adrenergic agonist drugs, including albuterol, are at least in part attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3',5'- adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Albuterol has been shown in most controlled clinical trials to have more effect on the respiratory tract, in the form of bronchial smooth muscle relaxation, than isoproterenol at comparable doses while producing fewer cardiovascular effects. Albuterol is longer acting than isoproterenol in most patients by any route of administration because it is not a substrate for the cellular uptake processes for catecholamines nor for catechol-O-methyl transferase.
Status:
US Approved Rx
(2013)
Source:
ANDA091422
(2013)
Source URL:
First approved in 1981
Source:
BUPRENEX by INDIVIOR
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Buprenorphine is an opioid analgesic, used to treat opioid addiction, moderate acute pain, and moderate chronic pain. Buprenorphine is a partial agonist at the mµ-opioid receptor and an antagonist at the kappa-opioid receptor. One unusual property of buprenorphine observed in vitro studies is its very slow rate of dissociation from its receptor. This could account for its longer duration of action than morphine, the unpredictability of its reversal by opioid antagonists, and its low level of manifest physical dependence. The principal action of the therapeutic value of buprenorphine is analgesia and is thought to be due to buprenorphine binding with high affinity to opioid receptors on neurons in the brain and spinal cord. Buprenorphine produces respiratory depression by direct action on brain stem respiratory centers. The respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to both increases in carbon dioxide tension and electrical stimulation. Buprenorphine causes a reduction in motility associated with an increase in smooth muscle tone in the antrum of the stomach and duodenum. Digestion of food in the small intestine is delayed and propulsive contractions are decreased. Buprenorphine produces peripheral vasodilation, which may result in orthostatic hypotension or syncope. Manifestations of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes, sweating, and/or orthostatic hypotension.
Status:
US Approved Rx
(1986)
Source:
ANDA071081
(1986)
Source URL:
First approved in 1980
Source:
MECLOMEN by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Meclofenamic acid, used as Meclofenamate sodium, is a non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. Meclofenamate sodium capsules are indicated for the relief of mild to moderate pain, for the treatment of primary dysmenorrhea and for the treatment of idiopathic heavy menstrual blood loss; for relief of signs and symptoms of juvenile arthritis; so as for relief of the signs and symptoms of rheumatoid arthritis; For relief of the signs and symptoms of osteoarthritis. The mode of action, like that of other nonsteroidal anti-inflammatory agents, is not known. Therapeutic action does not result from pituitary-adrenal stimulation. In animal studies, meclofenamate sodium was found to inhibit prostaglandin synthesis and to compete for binding at the prostaglandin receptor site. In vitro, meclofenamate sodium was found to be an inhibitor of human leukocyte 5-lipoxygenase activity. These properties may be responsible for the anti-inflammatory action of meclofenamate sodium. There is no evidence that meclofenamate sodium alters the course of the underlying disease.