U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 36191 - 36200 of 39591 results

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)


Ortho-iodohippurate (also known IODOHIPPURATE) as is used for the determination of effective renal plasma flow. It is a halogen derivative of a compound normally found in human urine, and as the end product of a process of detoxification is synthesized in the body. This compound is nontoxic, when administrated intravenous. In patients with normally functioning kidneys, 85% of the ortho-iodohippurate may be found in the urine 30 minutes after intravenous injection. It is eliminated mainly by tubular secretion.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)



Grepafloxacin, (S)- is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. Grepafloxacin has a chiral center and therefore has two optical enantiomeric isomers, R(+)- and S(-)-grepafloxacin. In neutrophil respiratory burst induced by N-formyl-methionyl leucyl-phenylalanine grepafloxacin induces a priming effect. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK).

Showing 36191 - 36200 of 39591 results