U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 34401 - 34410 of 34956 results

Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Ammonium methacrylate is an ammonium salt of methacrylic acid. It is able to polymerize to form ammonium methacrylate copolymer. It is used in cosmetic industry as a binder (to hold together the ingredients of a compressed tablet or cake), film former (an ingredient that dry to form a thin coating on the skin, hair or nails) and viscosity increasing agent.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Ammonium methacrylate is an ammonium salt of methacrylic acid. It is able to polymerize to form ammonium methacrylate copolymer. It is used in cosmetic industry as a binder (to hold together the ingredients of a compressed tablet or cake), film former (an ingredient that dry to form a thin coating on the skin, hair or nails) and viscosity increasing agent.
Status:
Possibly Marketed Outside US
First approved in 1955
Source:
Clorpactin WCS-90 by United-Guardian, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Inorganic pyrophosphate (PPi ) has long been known as a by-product of many intracellular biosynthetic reactions. PPi plays the regulatory role in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi is used as a biochemical energy source instead of ATP especially in bacteria, protists, and plants. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Sodium, potassium and calcium pyrophosphates (E450) are used as food additives as buffers and emulsifiers.
Status:
Possibly Marketed Outside US
First approved in 1955
Source:
Clorpactin WCS-90 by United-Guardian, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Inorganic pyrophosphate (PPi ) has long been known as a by-product of many intracellular biosynthetic reactions. PPi plays the regulatory role in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi is used as a biochemical energy source instead of ATP especially in bacteria, protists, and plants. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Sodium, potassium and calcium pyrophosphates (E450) are used as food additives as buffers and emulsifiers.
Status:
Possibly Marketed Outside US
First approved in 1955
Source:
Clorpactin WCS-90 by United-Guardian, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Inorganic pyrophosphate (PPi ) has long been known as a by-product of many intracellular biosynthetic reactions. PPi plays the regulatory role in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi is used as a biochemical energy source instead of ATP especially in bacteria, protists, and plants. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Sodium, potassium and calcium pyrophosphates (E450) are used as food additives as buffers and emulsifiers.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
Source:
Canada:BARIUM CARBONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.

Showing 34401 - 34410 of 34956 results