U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 3091 - 3100 of 3321 results

Status:
Investigational
Source:
NCT00427856: Phase 2 Interventional Completed Lymphoma, Follicular
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Obatoclax (GX15-070) is a novel BH3 mimetic pan Bcl- 2 inhibitor. The clinically studied formulation is as obatoclax mesylate (Box 1), a salt. It is only under study as an intravenous preparation. It functions to block BH3-mediated binding of Bcl-2, Bcl-XL, Mcl-1 and A1 to Bax and Bak. Bax and Bak thus are unopposed and able to dimerize to allow initiation of intrinsic apoptosis. Preclinically, obatoclax has been shown to reverse inhibition of Bax or Bak by Bcl-2, Bcl-XL, Bcl-w and Mcl-1. Obatoclax was discovered by Gemin X, which was acquired by Cephalon, which has since been acquired by Teva Pharmaceuticals. Obatoclax had been in phase III clinical trials by Gemin X Biotechnologies (subsidiary of Teva) for the treatment of non-small lung cancer (NSCLC). The compound received orphan drug designation in the U.S. in 2004 for the treatment of chronic lymphocytic leukemia (CLL). However, Teva discontinued the development of obatoclax in 2013.
Status:
Investigational
Source:
NCT02197130: Phase 2 Interventional Completed Huntington's Disease
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



PF-2545920 is an orally-active phosphodiesterase 10A (PDE10A) inhibitor originated by Pfizer, for the treatment of Huntington's disease. PF-2545920 was originally developed by Pfizer for the treatment of schizophrenia. But later clinical studies for Schizophrenia were discontinued. PF-2545920 is a potent and selective PDE10A inhibitor with IC50 of 0.37 nM, with >1000-fold selectivity over the PDE. PF-2545920 is active in a range of antipsychotic models, antagonizing apomorphine-induced climbing in mice, inhibiting conditioned avoidance responding in both rats and mice, and blocking N-methyl-D-aspartate antagonist-induced deficits in prepulse inhibition of acoustic startle response in rats, while improving baseline sensory gating in mice.
Status:
Investigational
Source:
NCT00952588: Phase 2/Phase 3 Interventional Completed Acute Myeloid Leukemia
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Barasertib (AZD1152) is a dihydrogen phosphate prodrug of a pyrazoloquinazoline Aurora kinase inhibitor [AZD1152–hydroxyquinazoline pyrazol anilide (HQPA)] and is converted rapidly to the active AZD1152-HQPA in plasma. AstraZeneca was developing the aurora kinase inhibitor, barasertib (AZD 1152) as a therapeutic for cancer. AZD1152-HQPA is a highly potent and selective inhibitor of Aurora B (Ki, 0.36nmol/L) compared with Aurora A (Ki, 1,369nmol/L) and has a high specificity versus a panel of 50 other kinases. Consistent with inhibition of Aurora B kinase, addition of AZD1152-HQPA to tumour cells in vitro induces chromosome misalignment, prevents cell division, and consequently reduces cell viability and induces apoptosis. Barasertib (AZD1152) potently inhibited the growth of human colon, lung, and haematologic tumour xenografts (mean tumour growth inhibition range, 55% to ≥100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumour-bearing athymic rats treated i.v. with Barasertib (AZD1152) revealed a temporal sequence of phenotypic events in tumours: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumours. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of Barasertib (AZD1152) treatment. Barasertib (AZD1152) was in phase III for the treatment of Acute myeloid leukaemia, but later these studies were discontinued.
Status:
Investigational
Source:
NCT01981395: Phase 1 Interventional Completed Hyperalgesia
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist with inverse agonist activity. Fenobam was previously investigated as an anxiolytic in a number of phase II studies in the early 1980s. These studies revealed a mixed picture of anxiolytic efficacy, with double blind, placebo controlled trials variously reporting the compound as active or inactive. This discrepancy was not easily reconciled based on patient numbers, dose level, duration of treatment, or outcome measures. The positive effects seen in animal models of fragile X syndrome (FXS) treated with fenobam or other mGluR5 antagonists, the apparent lack of clinically significant adverse effects, and the potential beneficial clinical effects seen in this pilot trial support further study of the compound in adults with FXS.
Status:
Designated
Source:
FDA ORPHAN DRUG:1019324
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Designated
Source:
FDA ORPHAN DRUG:873522
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Designated
Source:
FDA ORPHAN DRUG:903322
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Designated
Source:
FDA ORPHAN DRUG:898222
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

TGF-B-recpotor inhibitor (dihydropyrrolopyrazole, 13) is one of the series of optimized, bioavailable dihydropyrrolopyrazole TGF-beta receptor type I inhibitors synthesized at Ely Lilly and is an investigational antitumor agent.
Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) is a yellow-colored crystalline solid powder and soluble in most polar organic solvents, but insoluble in water. An alkaline solution of luminol oxidized by oxidizing agents exhibits chemiluminescence. Luminol was first synthesized by Schmitz in 1902, the chemiluminescence property of luminol was first discovered by Albrecht in 1928. Luminol is one of the most widely used chemiluminescent compounds because of its availability and low cost. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays.

Showing 3091 - 3100 of 3321 results