U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 291 - 300 of 36243 results

Adapalene is a topical retinoid primarily used in the treatment of acne and is used (off-label) to treat keratosis pilaris as well as other skin conditions. Galderma currently markets it under the trade names Differin in some countries, and Adaferin in India. Adapalene acts on retinoid receptors. Biochemical and pharmacological profile studies have demonstrated that adapalene is a modulator of cellular differentiation, keratinization, and inflammatory processes all of which represent important features in the pathology of acne vulgaris. Mechanistically, adapalene binds to specific retinoic acid nuclear receptors but does not bind to the cytosolic receptor protein. Although the exact mode of action of adapalene is unknown, it is suggested that topical adapalene normalizes the differentiation of follicular epithelial cells resulting in decreased microcomedone formation.
Meropenem (generic name: meropenem hydrate) is a carbapenem antibiotic for injection showing a strong antibacterial activity to a wide range of bacteria strains from Gram-positive bacteria, Gram-negative bacteria to anaerobic bacteria. It is used as single agent therapy for the treatment of the following infections: complicated skin and skin structure infections due to Staphylococcus aureus (b-lactamase and non-b-lactamase producing, methicillin-susceptible isolates only), Streptococcus pyogenes, Streptococcus agalactiae, viridans group streptococci. This drug also used in case of Intra-abdominal Infections for the treatment complicated appendicitis and peritonitis caused by viridans group streptococci, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis, B. thetaiotaomicron, and Peptostreptococcus species. In addition is used the treatment of bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae (b-lactamase and non-b-lactamase-producing isolates), and Neisseria meningitides. The bactericidal activity of meropenem results from the inhibition of cell wall synthesis. Meropenem readily penetrates the cell wall of most Gram-positive and Gram-negative bacteria to reach penicillin-binding-protein (PBP) targets. Its strongest affinities are toward PBPs 2, 3 and 4 of Escherichia coli and Pseudomonas aeruginosa; and PBPs 1, 2 and 4 of Staphylococcus aureus. Meropenem has significant stability to hydrolysis by β-lactamases, both penicillinases and cephalosporinases produced by Gram-positive and Gram-negative bacteria. Meropenem should not be used to treat methicillin-resistant Staphylococcus aureus (MRSA) or methicillin-resistant Staphylococcus epidermidis (MRSE). Meropenem product with such superior effectiveness and safety has been approved for marketing by 100 countries or more in the world (as of March 2004) since its first launch in Italy in 1994.
Nevirapine is a non-nucleoside reverse transcriptase inhibitor (nNRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). HIV-2 RT and eukaryotic DNA polymerases (such as human DNA polymerases alpha, beta, or sigma) are not inhibited by nevirapine. Nevirapine is, in general, only prescribed after the immune system has declined and infections have become evident. It is always taken with at least one other HIV medication such as Retrovir or Videx. The virus can develop resistance to nevirapine if the drug is taken alone, although even if used properly, nevirapine is effective for only a limited time. Nevirapine binds directly to reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by causing a disruption of the enzyme's catalytic site. The activity of nevirapine does not compete with template or nucleoside triphosphates. Nevirapine is used for use in combination with other antiretroviral drugs in the ongoing treatment of HIV-1 infection.
Topotecan, a semi-synthetic derivative of camptothecin (a plant alkaloid obtained from the Camptotheca acuminata tree), is an anti-tumor drug with topoisomerase I-inhibitory activity similar to irinotecan. DNA topoisomerases are enzymes in the cell nucleus that regulate DNA topology (3-dimensional conformation) and facilitate nuclear processes such as DNA replication, recombination, and repair. During these processes, DNA topoisomerase I creates reversible single-stranded breaks in double-stranded DNA, allowing intact single DNA strands to pass through the break and relieve the topologic constraints inherent in supercoiled DNA. The 3'-DNA terminus of the broken DNA strand binds covalently with the topoisomerase enzyme to form a catalytic intermediate called a cleavable complex. After DNA is sufficiently relaxed and the strand passage reaction is complete, DNA topoisomerase reattaches the broken DNA strands to form the unaltered topoisomers that allow transcription to proceed. Topotecan interferes with the growth of cancer cells, which are eventually destroyed. Since the growth of normal cells can be affected by the medicine, other effects may also occur. Unlike irinotecan, topotecan is found predominantly in the inactive carboxylate form at neutral pH and it is not a prodrug. Topotecan has the same mechanism of action as irinotecan and is believed to exert its cytotoxic effects during the S-phase of DNA synthesis. Topoisomerase I relieves torsional strain in DNA by inducing reversible single strand breaks. Topotecan binds to the topoisomerase I-DNA complex and prevents religation of these single strand breaks. This ternary complex interferes with the moving replication fork, which leads to the induction of replication arrest and lethal double-stranded breaks in DNA. As mammalian cells cannot efficiently repair these double strand breaks, the formation of this ternary complex eventually leads to apoptosis (programmed cell death). Topotecan mimics a DNA base pair and binds at the site of DNA cleavage by intercalating between the upstream (−1) and downstream (+1) base pairs. Intercalation displaces the downstream DNA, thus preventing religation of the cleaved strand. By specifically binding to the enzyme–substrate complex, Topotecan acts as an uncompetitive inhibitor. Topotecan is used for the treatment of advanced ovarian cancer in patients with disease that has recurred or progressed following therapy with platinum-based regimens. Also used as a second-line therapy for treatment-sensitive small cell lung cancer, as well as in combination with cisplatin for the treatment of stage IV-B, recurrent, or persistent cervical cancer not amenable to curative treatment with surgery and/or radiation therapy. Topotecan is sold under the trade name Hycamtin.
Ritonavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Ritonavir binds to the protease active site and inhibits the activity of the enzyme. It is FDA approved for the treatment of HIV-1 infection. In patients receiving medications metabolized by CYP3A or initiation of medications metabolized by CYP3A in patients already receiving Ritonavir, may increase plasma concentrations of medications metabolized by CYP3A. The most frequently reported adverse drug reactions among patients receiving Ritonavir alone or in combination with other antiretroviral drugs were gastrointestinal (including diarrhea, nausea, vomiting, abdominal pain (upper and lower)), neurological disturbances (including paresthesia and oral paresthesia), rash, and fatigue/asthenia.
Topiramate is an anticonvulsant indicated in the treatment of epilepsy and migraine. Topiramate enhances GABA-activated chloride channels. In addition, topiramate inhibits excitatory neurotransmission, through actions on kainate and AMPA receptors. There is evidence that topiramate has a specific effect on GluR5 kainate receptors. It is also an inhibitor of carbonic anhydrase, particular subtypes II and IV, but this action is weak and unlikely to be related to its anticonvulsant actions, but may account for the bad taste and the development of renal stones seen during treatment. Its possible effect as a mood stabilizer seems to occur before anticonvulsant qualities at lower dosages. Topiramate inhibits maximal electroshock and pentylenetetrazol-induced seizures as well as partial and secundarily generalized tonic-clonic seizures in the kindling model, findings predective of a broad spectrum of antiseizure activities clinically. The precise mechanism of action of topiramate is not known. However, studies have shown that topiramate blocks the action potentials elicited repetitively by a sustained depolarization of the neurons in a time-dependent manner, suggesting a state-dependent sodium channel blocking action. Topiramate also augments the activity of the neurotransmitter gamma-aminobutyrate (GABA) at some subtypes of the GABAAreceptor (controls an integral chloride channel), indicating a possible mechanism through potentiation of the activity of GABA. Topiramate also demonstrates antagonism of the AMPA/kainate subtype of the glutamate excitatory amino acid receptor. It also inhibits carbonic anhydrase (particularly isozymes II and IV), but this action is weak and unlikely to be related to its anticonvulsant actions. Topiramate is used for the treatment and control of partial seizures and severe tonic-clonic (grand mal) seizures and also for the prevention of migraine headaches. In children it is also used for treatment of Lennox-Gastaut syndrome. Topiramate is sold under the brand name Topamax. A combination product containing phentermine and topiramate extended-release called QSYMIA® is indicated for the management of obesity.
Status:
First approved in 1996

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Acitretin is all-Trans-9-(4-methoxy-2, 3, 6¬ trimethylphenyl)-three, 7-dimethyl-2, 4, 6, 8-nonatetraenoic acid. It is a metabolite of exterminate and is related to both retinoic acid and retinol (vitamin A). It is taken orally, and is typically used for psoriasis. The mechanism of action of is unknown. However it is believed to work by targeting specific receptors (retinoid receptors such as RXR and RAR) in the skin, which help normalize the growth cycle of skin cells. Studies on nuclear retinoic acid receptors have shown that acitretin activates all 3 receptor subtypes (RAR-alpha, -beta, and -gamma) without measurable receptor binding; this paradox remains unexplained.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Nisoldipine is a 1,4-dihydropyridine derivative with an outstanding vascular selectivity. As a specific calcium antagonist, it shortens the action potential and causes electromechanical uncoupling in ventricular myocardium. However, this effect, resulting in a negative inotropic action, appears at 100–1000 times higher concentrations of nisoldipine in comparison with its inhibition of calcium-dependent vascular contractions. Detailed analyses of pharmacological effects revealed additional properties such as enhancement of sodium excretion, an interaction with the reninangiotensin-aldosterone system and a protective effect against acute renal ischaemia, that may contribute to its therapeutic efficacy. Nisoldipine was developed at Bayer then licensed to Zeneca and marketed in the United States as SULAR. SULAR is indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. The mechanism of the therapeutic effect of nisoldipine is complex. It involves a decrease of the total peripheral vascular resistance (reduction of afterload) and an increase in coronary blood flow. Moreover, nisoldipine obviously normalises the impaired volume homoeostasis by improving renal function and thus reduces the need for activation of the ANP system. In the advanced stages of hypertension, nisoldipine prevents deleterious calcium overload and the resulting tissue damage.
Epoprostenol (marketed as FLOLAN, VELETRI) is a prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. Epoprostenol (PGI2, PGX, prostacyclin), a metabolite of arachidonic acid, is a naturally occurring prostaglandin with potent vasodilatory activity and inhibitory activity of platelet aggregation. FLOLAN (epoprostenol sodium) for Injection is a sterile sodium salt formulated for intravenous (IV) administration. Epoprostenol has two major pharmacological actions: (1) direct vasodilation of pulmonary and systemic arterial vascular beds, and (2) inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. The effect of epoprostenol on heart rate in animals varies with dose. At low doses, there is vagally mediated brudycardia, but at higher doses, epoprostenol causes reflex tachycardia in response to direct vasodilation and hypotension. No major effects on cardiac conduction have been observed. Additional pharmacologic effects of epoprostenol in animals include bronchodilation, inhibition of gastric acid secretion, and decreased gastric emptying. No available chemical assay is sufficiently sensitive and specific to assess the in vivo human pharmacokinetics of epoprostenol. FLOLAN is indicated for the long-term intravenous treatment of primary pulmonary hypertension and pulmonary hypertension associated with the scleroderma spectrum of disease in NYHA Class III and Class IV patients who do not respond adequately to conventional therapy.
Lamivudine is a reverse transcriptase inhibitor used alone or in combination with other classes of anti-human immunodeficiency virus (HIV) drugs in the treatment of HIV infection. This molecule has two stereo-centers, thus giving rise to four stereoisomers: (+/-)-cis-lamivudine and (+/-)-trans-lamivudine. The latter is considered to be impurity of the pharmaceutically active isomer, (-)-cis-lamivudine.