U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 24423 results

Elacestrant (ER-306323 or RAD 1901 [6R)-6-(2-(N-(4-(2-(ethylamino)ethyl)benzyl)-N-ethylamino)-4-methoxyphenyl)-5,6,7,8-tetrahydronaphthalen-2-ol dihydrochloride]) is an estrogen receptor antagonist that binds to estrogen receptor-alpha (ERα). In ERpositive (ER ) HER2-negative (HER2-) breast cancer cells, elacestrant inhibited 17β-estradiol mediated cell proliferation at concentrations inducing degradation of ERα protein mediated through proteasomal pathway. Elacestrant demonstrated in vitro and in vivo antitumor activity including in ER HER2- breast cancer models resistant to fulvestrant and cyclin-dependent kinase 4/6 inhibitors and those harboring estrogen receptor 1 gene (ESR1) mutations. On January 27, 2023, the Food and Drug Administration (FDA) approved elacestrant (Orserdu, Stemline Therapeutics, Inc.) for postmenopausal women or adult men with ER-positive, HER2-negative, ESR1-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy.
Fruquintinib is a highly selective small molecule drug candidate that has been shown to inhibit VEGFR 24 hours a day via an oral dose, with lower off-target toxicities compared to other targeted therapies. Mechanistically, Fruquintinib selectively blocks VEGF-mediated receptor autophosphorylation, thus inhibiting endothelial cell proliferation and migration. In preclinical in vitro studies using a 32P-ATP assay, Fruquintinib selectively inhibited the tyrosine kinase activity associated with VEGFR-1, VEGFR-2, and VEGFR-3 at concentrations in the nanomolar range, but showed little inhibition against a panel of 254 kinases related to cell cycle or cell proliferation, including cyclin-dependent kinase (CDK1, 2, 5), the epidermal growth factor receptor (EGFR), the mesenchymal-epithelial transition factor (c-Met), and platelet-derived growth factor receptor β (PDGFRβ) kinase. In cellular assays, Fruquintinib potently inhibited VEGF-stimulated VEGFR phosphorylation and proliferation in human umbilical vein endothelial cells. Fruquintinib demonstrated potent antiangiogenic effect and anti-tumor activity in xenograft models of colon adenocarcinoma (HT-29), non-small cell lung cancer (NSCLC; NCI-H460), renal clear cell carcinoma (Caki-1), and gastric carcinoma (BGC823) in mice treated for 3 weeks. Fruquintinib is currently under joint development in China by Chi-Med and its partner Eli Lilly and Company (“Lilly”). Chi-Med and Lilly jointly announced top-line results from the FRESCO CRC trial on March 3, 2017. In addition, Fruquintinib is being studied in China in Phase III pivotal trial in non-small cell lung cancer (“NSCLC”), known as FALUCA; and a Phase II study using Fruquintinib combined with Iressa® (gefitinib) in the first-line setting for patients with advanced or metastatic NSCLC.
Sparsentan (RE-021; BMS-346567; PS433540; DARA-a) is a novel candidate in development by Retrophin for the treatment of focal segmental glomerulosclerosis (FSGS), a serious kidney disorder that often leads to end-stage renal disease (ESRD). Sparsentan is a single molecule with antagonism of the endothelin type A receptor (ETAR) and the angiotensin II type 1 receptor (AT1R). Sparsentan has high affinity for both the ETAR (Ki= 12.8 nM) and the AT1R (Ki=0.36 nM), and greater than 500-fold selectivity for these receptors over the endothelin type B and angiotensin II subtype 2 receptors. Endothelin-1 and angiotensin II are thought to contribute to the pathogenesis of IgAN via the ETAR and AT1R, respectively. The US Food and Drug Administration gave accelerated approval on February 17 2023 to sparsentan (Filspari), the first non-immunosuppressive therapy labeled for treating adults with primary immunoglobulin A (IgA) nephropathy.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fezolinetant (VEOZAH™) is an oral, small molecule, neurokinin 3 receptor (NK3R) antagonist, which is being developed by Astellas Pharma Inc. for the treatment of moderate to severe vasomotor symptoms (VMS) or hot flashes due to menopause. Inhibiting NK3R-mediated signaling in the central nervous system is a non-hormonal strategy to modulate the activity of neurons that are associated with thermoregulation, thereby reducing the frequency and severity of VMS. VEOZAH is a neurokinin 3 (NK3) receptor antagonist that blocks neurokinin B (NKB) binding on the kisspeptin/neurokinin B/dynorphin (KNDy) neuron to modulate neuronal activity in the thermoregulatory center. Fezolinetant has a high affinity for the NK3 receptor (Ki value of 19.9 to 22.1 nmol/L), which is more than 450-fold higher than the binding affinity to NK1 or NK2 receptors. Fezolinetant received its first approval in the USA in May 2023 for the treatment of moderate to severe VMS due to menopause.
Sotagliflozin (LX4211) is an orally-delivered small molecule compound that is currently in development for the treatment of type 1 and type 2 diabetes mellitus. Sotagliflozin (LX4211) inhibits both sodium-glucose cotransporter type 2, or SGLT2, a transporter responsible for most of the glucose reabsorption performed by the kidney, and sodium-glucose cotransporter type 1, or SGLT1, a transporter responsible for glucose and galactose absorption in the gastrointestinal tract, and to a lesser extent than SGLT2, glucose reabsorption in the kidney. Combining SGLT1 and SGLT2 inhibition in a single molecule would provide complementary insulin-independent mechanisms to treat diabetes.
Adagrasib (KRAZATI™) is an orally available, potent, small molecule inhibitor of KRAS G12C mutant isoform being developed by Mirati Therapeutics for the treatment of solid tumours harbouring KRAS G12C oncogenic driver mutation, including non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). Adagrasib is an irreversible inhibitor of KRAS G12C that covalently binds to the mutant cysteine in KRAS G12C and locks the mutant KRAS protein in its inactive state that prevents downstream signaling without affecting wild-type KRAS protein. Adagrasib inhibits tumor cell growth and viability in cells harboring KRAS G12C mutations and results in tumor regression in KRAS G12C-mutated tumor xenograft models with minimal off-target activity. In December 2022, adagrasib received its first approval in the USA for the treatment of adults with KRAS G12C-mutated locally advanced or metastatic NSCLC (as determined by an FDA approved test) who have received ≥ 1 prior systemic therapy. It was approved under accelerated approval based on objective response rate and duration of response, and its continued approval for this indication may be contingent upon verification and description of a clinical benefit in a confirmatory trial(s). The drug is under regulatory review for NSCLC in the European Union and is in development for CRC in the US. Clinical studies of adagrasib in solid tumours, including CRC, are underway in several countries.
Olutasidenib (FT-2102) is a highly potent, orally bioavailable, brain-penetrant, and selective inhibitor of mutant IDH1. Olutasidenib was designed to reduce R-2-HG and revert pathologic epigenetic modifications that impair cellular differentiation to restore regulatory enzyme function. In patients with AML, susceptible IDH1 mutations are defined as those leading to increased levels of 2-hydroxyglutarate (2-HG) in the leukemia cells and where efficacy is predicted by 1) clinically meaningful remissions with the recommended dose of olutasidenib and/or 2) inhibition of mutant IDH1 enzymatic activity at concentrations of olutasidenib sustainable at the recommended dosage according to validated methods. The most common of such mutations in patients with AML are R132H and R132C substitutions. In vitro, olutasidenib inhibited mutated IDH1 R132H, R132L, R132S, R132G, and R132C proteins; wild-type IDH1 or mutated IDH2 proteins were not inhibited. Olutasidenib inhibition of mutant IDH1 led to decreased 2-HG levels in vitro and in in vivo xenograft models. On December 1, 2022, the FDA approved olutasidenib (brand name Rezlidhia) capsules for adult patients with relapsed or refractory acute myeloid leukemia with a susceptible IDH1 mutation as detected by an FDA-approved test.
Mavacamten (Camzyos™; MYK-461) is an oral small-molecule cardiac myosin inhibitor developed by MyoKardia, Inc., a wholly owned subsidiary of Bristol Myers Squibb, for the treatment of hypertrophic cardiomyopathy (HCM) and diseases of diastolic dysfunction. Mavacamten is an allosteric and reversible inhibitor selective for cardiac myosin. Mavacamten modulates the number of myosin heads that can enter “on actin” (power-generating) states, thus reducing the probability of force-producing (systolic) and residual (diastolic) cross-bridge formation. Excess myosin actin cross-bridge formation and dysregulation of the super-relaxed state are mechanistic hallmarks of HCM. Mavacamten shifts the overall myosin population towards an energy-sparing, recruitable, super-relaxed state. In HCM patients, myosin inhibition with mavacamten reduces dynamic LVOT obstruction and improves cardiac filling pressures. In April 2022, mavacamten was approved for use in the USA in the treatment of adults with symptomatic New York Heart Association (NYHA) class II-III obstructive HCM to improve functional capacity and symptoms.
Vonoprazan (Vonoprazan fumarate or TAK-438) under brand name Takecab, discovered by Takeda, is a new medicine for treating acid-related diseases with a novel mechanism of action called potassium-competitive acid blockers (P-CABs) which competitively inhibits the binding of potassium ions to H+,K+-ATPase (also known as the proton pump) in the final step of gastric acid secretion in gastric parietal cells. The drug is approved in Japan for the treatment of acid-related diseases, including gastric ulcer, duodenal ulcer, reflux esophagitis and Adjunct to Helicobacter pylori eradication in the case of Helicobacter pylori gastritis.