U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 655 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Empagliflozin is a selective sodium glucose cotransporter-2 (SGLT-2) inhibitor designed for the treatment of type 2 diabetes mellitus. By inhibiting SGLT2, empagliflozin reduces renal reabsorption of filtered glucose and lowers the renal threshold for glucose, and thereby increases urinary glucose excretion. Empagliflozin interacts with diuretics, blood presure medicine and insulin. Jardiance reduces the risk of cardiovascular death in diabetes patients at high cardiovascular risk.
Nintedanib is a receptor tyrosine kinase inhibitor with potential antiangiogenic and antineoplastic activities. It is the only kinase inhibitor drug approved to treat idiopathic pulmonary fibrosis. that targets multiple receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (nRTKs). Nintedanib inhibits the following RTKs: platelet-derived growth factor receptor (PDGFR) α and β, fibroblast growth factor receptor (FGFR) 1-3, vascular endothelial growth factor receptor (VEGFR) 1-3, and Fms-like tyrosine kinase-3 (FLT3). Among them, FGFR, PDGFR, and VEGFR have been implicated in IPF pathogenesis. Nintedanib binds competitively to the adenosine triphosphate (ATP) binding pocket of these receptors and blocks the intracellular signaling which is crucial for the proliferation, migration, and transformation of fibroblasts representing essential mechanisms of the IPF pathology.
Suvorexant is a selective dual antagonist of orexin receptors OX1R and OX2R. It has been approved for the treatment of insomnia. The mechanism by which suvorexant exerts its therapeutic effect in insomnia is presumed to be through antagonism of orexin receptors. The orexin neuropeptide signaling system is a central promoter of wakefulness. Blocking the binding of wake-promoting neuropeptides orexin A and orexin B to receptors OX1R and OX2R is thought to suppress wake drive.
Olodaterol is a beta2-adrenoceptor agonist discovered by Boehringer Ingelheim and approved for the treatment of Chronic Obstructive Pulmonary Disease. The compound exerts its pharmacological effects by binding and activation of beta2-adrenoceptors after inhalation. Activation of these receptors in the airways results in a stimulation of intracellular adenyl cyclase, an enzyme that mediates the synthesis of cyclic-3’, 5’ adenosine monophosphate (cAMP). Elevated levels of cAMP induce bronchodilation by relaxation of airway smooth muscle cells. Olodaterol effect lasts for 24 hours.
Tasimelteon, developed by Vanda Pharmaceuticals Inc under license from Bristol-Myers Squibb Co, is a melatonin receptor agonist. Tasimelteon differs structurally from melatonin and drugs with known melatonin agonist activity, in particular by its distinct aromatic group and linker. Tasimelteon bears also no structural relationship to any other approved active substance. Tasimelteon is presumably acts through activation of MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. Tasimelteon is approved for the treatment of Non24-Hour Sleep-Wake Disorder.
Vortioxetine is an antidepressant for the treatment of major depressive disorder. Vortioxetine’s mechanism of action is not fully understood. Vortioxetine binds with high affinity to the serotonin transporter and its antidepressant actions are believed to be secondary to enhancing serotonin in the central nervous system through inhibition of reuptake. Vortioxetine also displays binding affinities to other serotonin (5-HT) receptors, including 5-HT3, 5-HT1A, and 5-HT7. Due to multimodal neurotransmitter enhancer profile, it has been suggested that it might need lesser receptor occupancy rate for clinical trials than other selective serotonin reuptake inhibitors and selective norepinephrine reuptake inhibitors. Since vortioxetine is an agonist and antagonist of multiple serotonin receptors, potential interactions may occur with other medications that alter the serotonergic pathways. There is an increased risk of serotonin syndrome when vortioxetine is used in combination with other serotonergic agents.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Ospemifene (commercial name Osphena produced by Shionogi) is anoral medication indicated for the treatment of dyspareunia – pain during sexual intercourse – encountered by some women, more often in those who are post-menopausal. Ospemifene is a selective estrogen receptor modulator (SERM) that selectively binds to estrogen receptors and either stimulates or blocks estrogen's activity in different tissue types. It has an agonistic effect on the endometrium. It’s building vaginal wall thickness which in turn reduces the pain associated with dyspareunia. Dyspareunia is most commonly caused by "vulval and vaginal atrophy”.
Trametinib is a reversible and specific inhibitor of mitogen-activated protein kinase kinases MEK1 and MEK2 which are involved in a RAS/RAF/MEK/ERK signaling pathway and control cell growth, survival, and differentiation. By inhibiting MEK1 and MEK2 trametinib blocks dual phosphorylation of ERK1/2 and stops cell cycling. In addition, trametinib blocks BRAF pathway in the cells with BRAF V600E mutations. Trametinib (as a single agent and in combination with dabrafenib) is approved for the treatment of unresectable or metastatic melanoma with BRAF V600E or V600K mutations.
Vilanterol (INN, USAN) is an ultra-long-acting β2 adrenoreceptor agonist (ultra-LABA), which was approved in May 2013 in combination with fluticasone furoate for sale as Breo Ellipta by GlaxoSmithKline for the treatment of chronic obstructive pulmonary disease (COPD). Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3’,5’-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs. Vilanterol is available in following combinations: a) with inhaled corticosteroid fluticasone furoate — fluticasone furoate/vilanterol (trade names Breo Ellipta , Relvar Ellipta; b) with muscarinic antagonist umeclidinium bromide — umeclidinium bromide/vilanterol (trade name Anoro Ellipta).

Class (Stereo):
CHEMICAL (ABSOLUTE)



Canagliflozin (INN, trade name Invokana or Sulisent) is a drug of the gliflozin class. It was developed by Mitsubishi Tanabe Pharma and is marketed under license by Janssen, a division of Johnson & Johnson. Canagliflozin is an antidiabetic drug used to improve glycemic control in people with type 2 diabetes. Sodium-glucose co-transporter 2 (SGLT2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Canagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, canagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases urinary glucose excretion. In extensive clinical trials, canagliflozin produced a consistent dose-dependent reduction in HbA1c of 0.77% to 1.16% when administered as monotherapy, combination with metformin, combination with metformin and a sulfonylurea, combination with metformin and pioglitazone, and in combination with insulin from a baselines of 7.8% to 8.1%, in combination with metformin, or in combination with metformin and a sulfonylurea. When added to metformin, canagliflozin 100 mg was shown to be non-inferior to both sitagliptin 100 mg and glimepiride in reductions on HbA1c at one year, whilst canagliflozin 300 mg successfully demonstrated statistical superiority over both sitagliptin and glimiperide in HbA1c reductions. Secondary efficacy endpoint of superior body weight reduction and blood pressure reduction (versus sitagliptin and glimiperide)) were observed as well. Canagliflozin produces beneficial effects on HDL cholesterol whilst increasing LDL cholesterol to produce no change in total cholesterol.