U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 33 results

3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA), a drug used for the treatment of Parkinson's disease patients. 3-OMD is formed by catechol-O-methyltransferase. 3-OMD may be responsible for the side effects of L-DOPA.
Status:
US Previously Marketed
First approved in 1982

Class (Stereo):
CHEMICAL (ACHIRAL)



Guanabenz, an antihypertensive agent for oral administration-, is an aminoguanidine derivative, 2,'6-dichlorobenzylideneamina-guanidine acetate. It is white to an almost white powder having not more than a slight odor. Sparingly soluble in water and in 0.1 N hydrochloric acid; soluble in alcohol and in propylene glycol. Guanabenz is an orally active central alpha-2 adrenergic agonist. Its antihypertensive action appears to be mediated via stimulation of central alpha-adrenergic receptors, resulting in a decrease of sympathetic outflow from the brain at the bulbar level to the peripheral circulatory system. In clinical trials, guanabenz acetate, given orally to hypertensive patients, effectively controlled blood pressure without any significant effect on glomerular filtration rate, renal blood flow, body fluid volume or body weight. The Myelin Repair Foundation and the National Institutes of Health (National Institute of Neurological Disorders and Stroke) are developing guanabenz for the treatment of multiple sclerosis. Unlike the currently available treatment for multiple sclerosis that suppresses the immune system, guanabenz, an FDA approved the drug for the treatment of high blood pressure, has a potential to reduce the loss of myelin by protecting and repairing myelin-producing cells in the brain from damage. Phase I development is underway in the US.
Status:
US Previously Marketed
Source:
NOV PONT W/NEOCOBEFRIN LEVONORDEFRIN by COOKE-WAITE
(1961)
Source URL:
*!
First approved in 1952
Source:
RAVOCAINE AND NOVOCAIN W/ NEO-COBEFRIN by EASTMAN KODAK
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Levonordefrin acts as a topical nasal decongestant and vasoconstrictor, most often used in dentistry. It is administered in a pre-mixed solution with local anesthetics, such as mepivacaine or procaine.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.
3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA), a drug used for the treatment of Parkinson's disease patients. 3-OMD is formed by catechol-O-methyltransferase. 3-OMD may be responsible for the side effects of L-DOPA.

Showing 21 - 30 of 33 results