U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 38 results

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Ceftibuten is a 3rd generation cephalosporin that is FDA approved for the treatment of acute bacterial exacerbations of chronic bronchitis, acute bacterial otitis media, pharyngitis and tonsillitis. Ceftibuten exerts its bactericidal action by binding to essential target proteins of the bacterial cell wall. This binding leads to inhibition of cell-wall synthesis. Common adverse reactions include diarrhea, nausea, vomiting and headache. The effect of increased gastric pH on the bioavailability of ceftibuten was evaluated in 18 healthy adult volunteers. Each volunteer was administered one 400-mg ceftibuten capsule. A single dose of liquid antacid did not affect the Cmax or AUC of ceftibuten; however, 150 mg of ranitidine q12h for 3 days increased the ceftibuten Cmax by 23% and ceftibuten AUC by 16%.
Ceftizoxime is a semisynthetic cephalosporin antibiotic, which can be administered intravenously or intramuscularly. It was sold under brand name, cefizox, but was removed from the US Market in 2007. Cefizox was used to treat different infections, such as lower respiratory tract infections caused by Klebsiella spp.; Proteus mirabilis; Escherichia coli; Haemophilus influenza; urinary tract Infections caused by Staphylococcus aureus (penicillinase¬ and nonpenicillinase¬producing); Escherichia coli; Pseudomonas spp. Also for treatment of gonorrhea including uncomplicated cervical and urethral gonorrhea caused by Neisseria gonorrhoeae; pelvic inflammatory disease caused by Neisseria gonorrhoeae, Escherichia coli or Streptococcus agalactiae; meningitis caused by Haemophilus influenza. In addition, some others infections. Cefizox has also been used successfully in the treatment of a limited number of pediatric and adult cases of meningitis caused by Streptococcus pneumoniae. Infections caused by aerobic gram ¬negative and by mixtures of organisms resistant to other cephalosporins, aminoglycosides, or penicillins have responded to treatment with Cefizox. The bactericidal action of ceftizoxime results from inhibition of the third and last stage of bacterial cell wall synthesis. Bacterial cell wall autolytic enzymes such as autolysins then mediate cell lysis; it is possible that ceftizoxime interferes with an autolysin inhibitor. Ceftizoxime is highly resistant to a broad spectrum of beta -lactamases (penicillinase and cephalosporinase), including Richmond types II, III, TEM, IV, produced by both aerobic and anaerobic gram - positive and gram - negative organisms and I.
Cefoperazone (marketed under the name Cefobid) is a third-generation cephalosporin antibiotic. Cefoperazone has a broad spectrum of activity: Respiratory Tract Infections caused by S. pneumoniae, H. influenzae, S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes (Group A beta-hemolytic streptococci), P. aeruginosa, Klebsiella pneumoniae, E. coli, Proteus mirabilis, and Enterobacter species. Peritonitis and Other Intra-abdominal Infections caused by E. coli, P. aeruginosa, and anaerobic gram-negative bacilli (including Bacteroides fragilis). Bacterial Septicemia caused by S. pneumoniae, S. agalactiae, S. aureus, Pseudomonas aeruginosa, E. coli, Klebsiella spp., Klebsiella pneumoniae, Proteus species (indole-positive and indole-negative), Clostridium spp. and anaerobic gram-positive cocci. Infections of the Skin and Skin Structures caused by S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes, and P. aeruginosa. Pelvic Inflammatory Disease, Endometritis, and Other Infections of the Female Genital Tract caused by N. gonorrhoeae, S. epidermidis, S. agalactiae, E. coli, Clostridium spp., Bacteroides species (including Bacteroides fragilis), and anaerobic gram-positive cocci. Cefobid has no activity against Chlamydia trachomatis. Therefore, when Cefobid is used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added. Urinary Tract Infections caused by Escherichia coli and Pseudomonas aeruginosa. Cefoperazone, a third-generation cephalosporin, interferes with cell wall synthesis by binding to the penicillin-binding proteins (PBPs), thus preventing cross-linking of nascent peptidoglycan. Cefoperazone is stable to penicillinases and has a high degree of stability to many beta-lactamases produced by gram-negative bacteria. When tested in vitro, cefoperazone has demonstrated synergistic interactions with aminoglycosides against gram-negative bacilli. As with all cephalosporins, hypersensitivity manifested by skin reactions or drug fever. Reversible neutropenia may occur with prolonged administration. Diarrhea or loose stools has been reported also.
Cefotaxime sodium is a semisynthetic, broad spectrum cephalosporin antibiotic for parenteral administration. It’s a 3rd Generation Cephalosporin that is FDA approved for the treatment of lower respiratory tract infections, genitourinary infections, gynecologic infections, bacteremia/septicemia, skin and skin structure infections, intra-abdominal infections, bone and/or joint infections and central nervous system infections. The bactericidal activity of cefotaxime sodium results from inhibition of cell wall synthesis. Cefotaxime sodium has in vitro activity against a wide range of gram-positive and gram-negative organisms. Cefotaxime sodium has a high degree of stability in the presence of ß-lactamases, both penicillinases and cephalosporinases, of gram-negative and gram-positive bacteria. Increased nephrotoxicity has been reported following concomitant administration of cephalosporins and aminoglycoside antibiotics. Common adverse reactions include injection site pain, injection site phlebitis, rash, diarrhea, vomiting. Increased nephrotoxicity has been reported following concomitant administration of cephalosporins and aminoglycoside antibiotics.
Cephradine is a semisynthetic cephalosporin antibiotic. Cephradine is active against the following organisms in vitro: Group A beta-hemolytic streptococci; Staphylococci, including coagulase-positive, coagulase-negative, and penicillinase-producing strains; Streptococcus pneumoniae (formerly Diplococcus pneumoniae); Escherichia coli; Proteus mirabilis; Klebsiella species; Hemophilus influenza. It works by stopping the growth of bacteria. It is used to treat a wide variety of bacterial infections (e.g., skin, ear, respiratory and urinary tract infections). Pseudomembranous colitis has been reported in patients receiving cephradine both orally and intravenously. Diarrhea generally starts 1 to 16 days after starting cephradine therapy. Gastrointestinal side effects have included nausea, vomiting. Hypersensitivity reactions have included rash, urticaria, pruritus, and joint pain. Bacteriostats may interfere with the bactericidal action of cephalosporins in acute infection; other agents, e.g., aminoglycosides, colistin, polymyxins, vancomycin, may increase the possibility of nephrotoxicity.

Showing 21 - 30 of 38 results