U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 251 - 260 of 9567 results

Status:
Investigational
Source:
INN:stercuronium iodide
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Stercuronium is a conessine derivative patented by Koninklijke Nederlandsche Gist-en Spiritusfabriek N. V. as a competitive neuromuscular blocking agent with antimuscarinic activity. In preclinical models, Stercuronium produced significantly greater inhibition (P < 0.05) of the bradycardia than of the vasodepressor response produced by carbachol. In guinea-pig atria, the negative chronotropic response to carbachol was inhibited to a similar degree to the negative inotropic response by Stercuronium, whereas in bladder and ileum Stercuronium was 17 fold less active as an antimuscarinic drug. The affinity of Stercuronium for the prejunctional muscarinic receptor on sympathetic nerve endings in the rabbit ear artery was similar to that for the muscarinic receptor mediating negative inotropic responses to carbachol in the rabbit left atrium. Unfortunately, in clinical trials Stercuronium producing marked tachycardia in some patients when used as a muscle relaxant.
Status:
Investigational
Source:
INN:pinometostat [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Pinometostat, also known as EPZ-5676, is a small molecule inhibitor of histone methyltransferase with potential antineoplastic activity. Upon intravenous administration, EPZ-5676 specifically blocks the activity of the histone lysine-methyltransferase DOT1L, thereby inhibiting the methylation of nucleosomal histone H3 on lysine 79 (H3K79) that is bound to the mixed lineage leukemia (MLL) fusion protein which targets genes and blocks the expression of leukemogenic genes. Epizyme is developing pinometostat, a small molecule inhibitor of DOT1L, for the treatment of patients with MLL-r, a genetically defined acute leukemia. Epizyme is conducting a phase 1 clinical trial in pediatric patients. Epizyme is evaluating preclinical combinations of pinometostat with other anti-cancer agents in MLL-r leukemia. Pinometostat is being developed in collaboration with Celgene. Epizyme retains all U.S. rights to pinometostat and has granted Celgene an exclusive license to pinometostat outside of the U.S.
Status:
Investigational
Source:
NCT01234506: Phase 2 Interventional Completed Oxidative Stress
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Secoisolariciresinol diglucoside (SDG) isolated from flaxseed is a lipid-lowering and antioxidant agent. It suppresses the development of hypercholesterolemic atherosclerosis in rabbits. Secoisolariciresinol diglucoside has been shown to have antioxidant and cardioprotective properties. SDG interferes with the development of different types of diseases like cardiovascular, diabetic, lupus nephritis, bone, kidney, menopause, reproduction, mental stress, immunity, atherosclerosis, hemopoietic, liver necrosis and urinary disorders due to its various biological properties including anti-inflammatory, antioxidant, antimutagenic, antimicrobial, antiobesity, antihypolipidemic and neuroprotective effects. Moreover, SDG has a defending mediator against various cancers by modulating multiple cell signaling pathways. The animal and human studies have shown the prevention role of SDG against some cancers (breast, lung and colon) as a result of its strong anti-proliferative, antioxidant, anti-oestrogenic and/or anti-angiogenic activity. It is proposed that the anticancer activity of SDG is associated with the inhibition of enzymes involved in carcinogenesis. Human studies showed the SDG as potential cardiovascular protector by mediating the mechanisms of total cholesterol, LDL-cholesterol, HDL-cholesterol, triacylglycerides and glucose metabolism. It was observed that 20 hypercholesterolaemia and hypertriglyceridaemia subjects receiving 600 mg SDG per day for 8 weeks led to significant reductions in total cholesterol, LDL-cholesterol and glucose concentrations compared with the placebo group. The animal and human studies revealed that high fat diet containing 0 · 5 to 1 · 0 % SDG reduces liver triglycerides content, serum triglycerides, total cholesterol, and insulin and leptin concentrations that resulted in significantly reduced visceral fat gain as compared to group of mice receiving high fat diet without SDG. SDG reduces C-reactive protein concentrations which are associated with insulin resistance and diabetes mellitus in type 2 diabetics. Daily consumption of low-fat muffin enriched with SDG (500 mg/day) for 6 week can reduce CRP concentrations. SDG has long acting hypotensive effect mediated through the guanylate cyclase enzyme.
Status:
Investigational
Source:
NCT04668235: Phase 3 Interventional Completed COVID-19
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
JAN:DELGOCITINIB [JAN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:clevudine
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT02661542: Phase 1/Phase 2 Interventional Completed Solid Tumors
(2016)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT02530255: Not Applicable Interventional Completed Alzheimer Disease
(2016)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Status:
Investigational
Source:
NCT01288677: Phase 1 Interventional Completed Healthy Volunteer
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT04523181: Phase 2 Interventional Completed Covid-19
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Antroquinonol is isolated from Antrodia camphorata, a camphor tree mushroom, and is a valuable traditional Chinese herbal medicine that exhibits pharmacological activities against several diseases, including cancer. Antroquinonol displayed anticancer activity against hepatocellular carcinoma cell lines through activation of 5′ adenosine-monophosphate-activated protein kinase and inhibition of the mammalian target of rapamycin (mTOR) pathway. Antroquinonol also exhibits anticancer activity in human pancreatic cancers through inhibition of the phosphoinositide-3 kinase (PI3K)/Akt/mTOR pathway, which in turn downregulates the expression of cell cycle regulators. The translational inhibition causes a G1 arrest of the cell cycle and ultimately mitochondria-dependent apoptosis. A study on the A549 pulmonary adenocarcinoma cell line demonstrated that antroquinonol-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspase-3 and poly ADP ribose polymerase cleavage. Moreover, antroquinonol treatment downregulated the expression of B-cell lymphoma 2 proteins, which was correlated with decreased PI3K and mTOR protein levels, without altering the levels of pro- or antiapoptotic proteins. Antroquinonol is currently in phase II trials (USA and Taiwan) for the treatment of non-small-cell lung carcinoma (NSCLC), atopic dermatitis; colorectal cancer; hepatitis B; hyperlipidaemia; pancreatic cancer. Antroquinonol was also approved for drug clinical trials by the Russian Ministry of Health (MoH). The MoH gave permission to test the efficacy and safety of Phase II clinical trials in patients with acute myeloid leukemia in Russia. Antroquinonol received the Orphan Drug Designation by the FDA in treatment of pancreatic cancer, liver cancer and acute myeloid leukaemia.