U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 241 - 250 of 311 results

Ipratropium (ipratropium bromide, ATROVENT® HFA) is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is indicated for the maintenance treatment of bronchospasm associated with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and emphysema. Ipratropium (ipratropium bromide, ATROVENT® HFA) is an anticholinergic (parasympatholytic) agent which, based on animal studies, appears to inhibit vagally-mediated reflexes by antagonizing the action of acetylcholine, the transmitter agent released at the neuromuscular junctions in the lung. Anticholinergics prevent the increases in intracellular concentration of Ca2+ which is caused by interaction of acetylcholine with the muscarinic receptors on bronchial smooth muscle.
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Imipenem is a beta-lactam antibiotic belongings to the subgroup of carbapenems. Imipenem has a broad spectrum of activity against aerobic and anaerobic Gram positive as well as Gram negative bacteria. It is particularly important for its activity against Pseudomonas aeruginosa and the Enterococcus species. Imipenem is rapidly degraded by the renal enzyme dehydropeptidase when administered alone, and is always co-administered with cilastatin to prevent this inactivation. The bactericidal activity of imipenem results from the inhibition of cell wall synthesis. Its greatest affinity is for penicillin binding proteins (PBPs) 1A, 1B, 2, 4, 5 and 6 of Escherichia coli, and 1A, 1B, 2, 4 and 5 of Pseudomonas aeruginosa. The lethal effect is related to binding to PBP 2 and PBP 1B. Imipenem is marketed under the brand name Primaxin. PRIMAXIN I.M. (Imipenem and Cilastatin for Injectable Suspension) is a formulation of imipenem (a thienamycin antibiotic) and cilastatin sodium (the inhibitor of the renal dipeptidase, dehydropeptidase I). PRIMAXIN I.M. is a potent broad spectrum antibacterial agent for intramuscular administration.
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Succimer is an analogue of dimercaprol, and has replaced dimercaprol as one of the main antidotes used in the management of poisoning by lead and other heavy metals. The advantages of succimer are that it is effective by oral administration because it is soluble in water, it is well-tolerated, has relatively low toxicity and can be given at the same time as iron supplements to treat iron deficiency anaemia. It does not cause significant increase in urinary excretion of essential minerals unlike the other widelyused lead chelating agent, sodium calcium EDTA.
Nifedipine has been formulated as both a long- and short-acting 1,4-dihydropyridine calcium channel blocker. Nifedipine is sold under the brand names Adalat and Procardia among others. Nifedipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium inhibits the contractile processes of smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload. The vasodilatory effects of nifedipine result in an overall decrease in blood pressure. Nifedipine is used for the management of vasospastic angina, chronic stable angina, hypertension, and Raynaud's phenomenon. May be used as a first line agent for left ventricular hypertrophy and isolated systolic hypertension (long-acting agents).
Timolol is the non-selective Beta antagonist used as eye drops to treat increased pressure inside the eye such as in ocular hypertension and glaucoma. Timolol is also used for high blood pressure, chest pain due to insufficient blood flow to the heart, to prevent further complications after a heart attack, and to prevent migraines. Timolol is a beta1 and beta2 (non-selective) adrenergic receptor antagonist that does not have significant intrinsic sympathomimetic, direct myocardial depressant, or local anesthetic (membrane-stabilizing) activity. Timolol, when applied topically on the eye, has the action of reducing elevated, as well as normal intraocular pressure, whether or not accompanied by glaucoma. Elevated intraocular pressure is a major risk factor in the pathogenesis of glaucomatous visual field loss and optic nerve damage. The precise mechanism of the ocular hypotensive action of Timolol is not clearly established at this time. Tonography and fluorophotometry studies of the timolol maleate ophthalmic solution in man suggest that its predominant action may be related to the reduced aqueous formation. However, in some studies, a slight increase in outflow facility was also observed. In a study of plasma drug concentration in six subjects, the systemic exposure to timolol was determined following once daily administration of Timolol Maleate Ophthalmic Gel Forming Solution 0.5% in the morning. The mean peak plasma concentration following this morning dose was 0.28 ng/mL. Side effects, when given in the eye, include burning sensation, eye redness, superficial punctate keratopathy, corneal numbness.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.
Amoxicillin is one of the widely prescribed antibacterial agents, which was discovered by scientists at Beecham Research Laboratories in 1972. In the US GlaxoSmithKline markets it under the original brand name Amoxil. It is the first line treatment for middle ear infections. It is also used for strep throat, pneumonia, skin infections, and urinary tract infections it is taken by mouth. Amoxicillin inhibits the third and final stage of bacterial cell wall synthesis by preferentially binding to specific penicillin-binding proteins (PBPs) that are located inside the bacterial cell wall. This results in a formation of defective cell wall and a cell death. Common side effects include nausea and rash. It may also increase the risk of yeast infections and, when used in combination with clavulanic acid, diarrhea. It should not be used in those who are allergic to penicillin.

Showing 241 - 250 of 311 results