{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for penicillin root_references_citation in Reference Text / Citation (approximate match)
Status:
US Approved Rx
(1953)
Source:
NDA050138
(1953)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (ABSOLUTE)
Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved Rx
(1953)
Source:
NDA050138
(1953)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (ABSOLUTE)
Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved Rx
(1953)
Source:
NDA050138
(1953)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (ABSOLUTE)
Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved Rx
(2011)
Source:
ANDA079247
(2011)
Source URL:
First marketed in 1921
Source:
Ammonium Phosphate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Phosphoric acid, also known as orthophosphoric acid, is used in dentistry and orthodontics to clean and roughen the surfaces of teeth where dental appliances or fillings will be placed. In addition, this acid is a part of product ProcalAmine, which is indicated for peripheral administration in adults to preserve body protein and improve nitrogen balance in well-nourished, mildly catabolic patients who require short-term parenteral nutrition. In combination with dextrose (glucose) and levulose (fructose), phosphoric acid relieves nausea due to upset stomach from intestinal flu, stomach flu, and food or drink indiscretions. In addition, homeopathic product, Brain power contains also phosphoric acid and this product is used to temporarily relieve symptoms of general physical weakness and listlessness, including: fatigue; sore muscles & joints; dry skin; absence of sexual desire; occasional sleeplessness.
Status:
US Approved OTC
Source:
21 CFR 336.10(d) antiemetic meclizine hydrochloride
Source URL:
First approved in 1954
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Meclizine, a piperazine-derivative H1-receptor antagonist similar to buclizine, cyclizine, and hydroxyzine, is used as an antivertigo/antiemetic agent. Meclizine is used in the management of nausea, vomiting, and dizziness associated with motion sickness and vertigo in diseases affecting the vestibular apparatus. Along with its actions as an antagonist at H1-receptors, meclizine also possesses anticholinergic, central nervous system depressant, and local anesthetic effects. Meclizine depresses labyrinth excitability and vestibular stimulation and may affect the medullary chemoreceptor trigger zone. It is sold under the brand names Bonine, Bonamine, Antivert, Postafen, Sea Legs, and Dramamine II.
Status:
Investigational
Source:
INN:mebufotenin [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
N,N-Dimethyl-5-Methoxytryptamine (aka 5-MeO-DMT) is a psychedelic of the tryptamine class. It is found in a wide variety of plant species, and a single psychoactive toad species, the Colorado River toad. Like its close relatives DMT and bufotenin (5-HO-DMT), it has been used as an entheogen in South America. It can also be found in the dart poison traditionally used by the Yanoama Indians of Upper Orinoco. It acts as a non-selective serotonin (5-HT) agonist. -MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine. 5-MeO-DMT is classified as a controlled substance in China, Australia, Sweden, Turkey, and the USA.
Status:
Investigational
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
US Previously Marketed
Source:
ALLECUR 40MG by ROERIG
(1961)
Source URL:
First approved in 1960
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Clemizole is a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Clemizole is a novel inhibitor of TRPC5 channels. Clemizole is an H1 antagonist. Clemizole, an antihistamine drug that was once widely used for treatment of allergic disease, was recently discovered to be a potent inhibitor (IC50, 24 nM) of the interaction between an HCV protein (NS4B) and HCV RNA. Although clemizole was widely used during the 1950s and 1960s, this was before contemporary regulatory requirements were established for new drug development, and there is very minimal information about its pharmacokinetics and metabolism.