{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Agent Affecting Nervous System[C78272]" in comments (approximate match)
Status:
US Approved Rx
(1994)
Source:
ANDA074063
(1994)
Source URL:
First approved in 1982
Source:
VISKEN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Pindolol was developed at Sandoz at 1960s. Pindolol is a nonselective beta-adrenergic antagonist (beta-blocker) which possesses intrinsic sympathomimetic activity (partial agonist activity) in therapeutic dosage ranges but does not possess quinidine-like membrane stabilizing activity. The partial beta-adrenergic agonistic activity of pindolol in the heart appears to be completely restricted to the sinoatrial pacemaker. In standard pharmacologic tests in man and animals, Pindolol attenuates increases in heart rate, systolic blood pressure, and cardiac output resulting from exercise and isoproterenol administration, thus confirming its beta-blocking properties. In addition to beta-adrenergic activity pindolol demonstrates mixed agonist-antagonist activity at central 5-HT receptors. Although in accordance with the hypothesis that pindolol increases the antidepressant effects of selective serotonin reuptake inhibitors by antagonism of 5-HT at inhibitory 5-HT1A autoreceptors, pindolol possesses partial agonist activity at 5-HT1A receptors. Pindolol tablets are indicated in the management of hypertension.
Status:
US Approved Rx
(2017)
Source:
ANDA209058
(2017)
Source URL:
First approved in 1982
Source:
NDA018227
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Etomidate (AMIDATE®) is an imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It is intended for the induction of general anesthesia by intravenous injection. Etomidate (AMIDATE®) is also indicated for the supplementation of subpotent anesthetic agents, such as nitrous oxide in oxygen, during maintenance of anesthesia for short operative procedures such as dilation and curettage or cervical conization. It also produces a unique toxicity among anesthetic drugs - inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate (AMIDATE®) in the central nervous system are specific gamma-aminobutyric acid (GABA) type A receptor subtypes. The R(+) isomer of etomidate is 10 times more potent than its S(-) isomer at potentiating GABA-A receptor activity.
Status:
US Approved Rx
(1984)
Source:
NDA018760
(1984)
Source URL:
First approved in 1981
Source:
NDA018240
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Atenolol is a Beta-1 cardio-selective adreno-receptor blocking agent discovered and developed by ICI in 1976. Atenolol was launched in the market under the trade name Tenormin in 1976, and became the best-selling Beta-blocker in the world in the 1980s and 1990s. TENORMIN is indicated for the treatment of hypertension, to lower blood pressure; also for the long-term management of patients with angina pectoris and also is indicated in the management of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality. Like metoprolol, atenolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. Higher doses of atenolol also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles. Hypotensive mechanism of atenolol is very complex. Decrease in CO and inhibition of renin-angiotensin-aldosterone system may mainly be responsible for hypotension. It is likely that potassium retaining action of atenolol partly contributes to its hypotensive action. It is also hypothetized that renal kallikrein-kinin system may play a role in modulating the hypotensive action of atenolol.
Status:
US Approved Rx
(1981)
Source:
NDA018163
(1981)
Source URL:
First approved in 1981
Source:
NDA018163
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Temazepam is a benzodiazepine used as a hypnotic agent in the management of insomnia. Temazepam produces CNS depression at limbic, thalamic, and hypothalamic levels of the CNS. Temazepam increases the affinity of the neurotransmitter gamma-aminobutyric acid (GABA) for GABA receptors by binding to benzodiazepine receptors. Results are sedation, hypnosis, skeletal muscle relaxation, anticonvulsant activity, and anxiolytic action. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Temazepam is used for the short-term treatment of insomnia (generally 7-10 days).
Status:
US Approved Rx
(2010)
Source:
ANDA090248
(2010)
Source URL:
First approved in 1981
Source:
NDA018276
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Alprazolam, a benzodiazepine, is used to treat panic disorder and anxiety disorder. Unlike chlordiazepoxide, clorazepate, and prazepam, alprazolam has a shorter half-life and metabolites with minimal activity. Alprazolam may have significant drug interactions involving the hepatic cytochrome P-450 3A4 isoenzyme. Clinically, all benzodiazepines cause a dose-related central nervous system depressant activity varying from mild impairment of task performance to hypnosis. Unlike other benzodiazepines, alprazolam may also have some antidepressant activity, although clinical evidence of this is lacking. CNS agents of the 1,4 benzodiazepine class presumably exert their effects by binding at stereo specific receptors at several sites within the central nervous system. Their exact mechanism of action is unknown. Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Status:
US Approved Rx
(2016)
Source:
ANDA205390
(2016)
Source URL:
First approved in 1981
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Vecuronium is a neuromuscular blocking agent. Vecuronium operates by competing for the cholinoceptors at the motor end plate thereby exerting its muscle-relaxing properties which are used adjunctively to general anesthesia. Vecuronium is a bisquaternary nitrogen compound that acts by competitively binding to nicotinic cholinergic receptors. The binding of vecuronium decreases the opportunity for acetylcholine to bind to the nicotinic receptor at the postjunctional membrane of the myoneural junction. As a result, depolarization is prevented, calcium ions are not released and muscle contraction does not occur. Vecuronium is indicated as an adjunct to general anesthesia, to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation.
Status:
US Approved Rx
(2018)
Source:
ANDA207607
(2018)
Source URL:
First approved in 1981
Source:
BUPRENEX by INDIVIOR
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Buprenorphine is an opioid analgesic, used to treat opioid addiction, moderate acute pain, and moderate chronic pain. Buprenorphine is a partial agonist at the mµ-opioid receptor and an antagonist at the kappa-opioid receptor. One unusual property of buprenorphine observed in vitro studies is its very slow rate of dissociation from its receptor. This could account for its longer duration of action than morphine, the unpredictability of its reversal by opioid antagonists, and its low level of manifest physical dependence. The principal action of the therapeutic value of buprenorphine is analgesia and is thought to be due to buprenorphine binding with high affinity to opioid receptors on neurons in the brain and spinal cord. Buprenorphine produces respiratory depression by direct action on brain stem respiratory centers. The respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to both increases in carbon dioxide tension and electrical stimulation. Buprenorphine causes a reduction in motility associated with an increase in smooth muscle tone in the antrum of the stomach and duodenum. Digestion of food in the small intestine is delayed and propulsive contractions are decreased. Buprenorphine produces peripheral vasodilation, which may result in orthostatic hypotension or syncope. Manifestations of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes, sweating, and/or orthostatic hypotension.
Status:
US Approved Rx
(2013)
Source:
ANDA202180
(2013)
Source URL:
First approved in 1981
Source:
DESYREL by PRAGMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Trazodone (brand name Oleptro, Desyrel, etc) is a serotonin uptake inhibitor that is used as an antidepressive agent. Trazodone binds to the 5-HT2 receptor, it acts as a serotonin agonist at high doses and a serotonin antagonist at low doses. Like fluoxetine, trazodone's antidepressant activity likely results from blockage of serotonin reuptake by inhibiting serotonin reuptake pump at the presynaptic neuronal membrane. If used for long time periods, postsynaptic neuronal receptor binding sites may also be affected. The sedative effect of trazodone is likely the result of alpha-adrenergic blocking action and modest histamine blockade at the H1 receptor. It weakly blocks presynaptic alpha2-adrenergic receptors and strongly inhibits postsynaptic alpha1 receptors. Trazodone does not affect the reuptake of norepinephrine or dopamine within the CNS. Because of its lack of anticholinergic side effects, trazodone is especially useful in situations in which antimuscarinic effects are particularly problematic (e.g., in patients with benign prostatic hyperplasia, closed-angle glaucoma, or severe constipation). Trazodone's propensity to cause sedation is a dual-edged sword. For many patients, the relief from agitation, anxiety, and insomnia can be rapid; for other patients, including those individuals with considerable psychomotor retardation and feelings of low energy, therapeutic doses of trazodone may not be tolerable because of sedation. Trazodone elicits orthostatic hypotension in some patients, probably as a consequence of α1-adrenergic receptor blockade. Mania has been observed in association with trazodone treatment, including in patients with bipolar disorder, as well as in patients with previous diagnoses of major depression. Compared to the reversible MAOI antidepressant drug moclobemide, significantly more impairment of vigilance occurs with trazodone.
Status:
US Approved Rx
(1986)
Source:
ANDA071081
(1986)
Source URL:
First approved in 1980
Source:
MECLOMEN by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Meclofenamic acid, used as Meclofenamate sodium, is a non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. Meclofenamate sodium capsules are indicated for the relief of mild to moderate pain, for the treatment of primary dysmenorrhea and for the treatment of idiopathic heavy menstrual blood loss; for relief of signs and symptoms of juvenile arthritis; so as for relief of the signs and symptoms of rheumatoid arthritis; For relief of the signs and symptoms of osteoarthritis. The mode of action, like that of other nonsteroidal anti-inflammatory agents, is not known. Therapeutic action does not result from pituitary-adrenal stimulation. In animal studies, meclofenamate sodium was found to inhibit prostaglandin synthesis and to compete for binding at the prostaglandin receptor site. In vitro, meclofenamate sodium was found to be an inhibitor of human leukocyte 5-lipoxygenase activity. These properties may be responsible for the anti-inflammatory action of meclofenamate sodium. There is no evidence that meclofenamate sodium alters the course of the underlying disease.
Status:
US Approved Rx
(1991)
Source:
ANDA072879
(1991)
Source URL:
First approved in 1980
Source:
ASENDIN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Amoxapine is an antidepressant of the dibenzoxazepine class, chemically distinct from the dibenzazepines, dibenzocycloheptenes, and dibenzoxepines. It is designated chemically as 2-Chloro-11- (1-piperazinyl)dibenz[b,f ][1,4]oxazepine. Amoxapine is an antidepressant with a mild sedative component to its action. The mechanism of its clinical action in man is not well understood. In animals, amoxapine reduced the uptake of norepinephrine and serotonin and blocked the response of dopamine receptors to dopamine. Amoxapine is not a monoamine oxidase inhibitor. Amoxapine is absorbed rapidly and reaches peak blood levels approximately 90 minutes after ingestion. It is almost completely metabolized. The main route of excretion is the kidney. In vitro tests show that amoxapine binding to human serum is approximately 90%. In man, amoxapine serum concentration declines with a half-life of eight hours. However, the major metabolite, 8-hydroxyamoxapine, has a biologic half-life of 30 hours. Metabolites are excreted in the urine in conjugated form as glucuronides. Clinical studies have demonstrated that amoxapine has a more rapid onset of action than either amitriptyline or imipramine. The initial clinical effect may occur within four to seven days and occurs within two weeks in over 80% of responders.