{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
tyrosine
to a specific field?
Status:
US Approved Rx
(1985)
Source:
ANDA070076
(1985)
Source URL:
First approved in 1962
Source:
ALDOMET by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.
Status:
US Approved Rx
(2009)
Source:
ANDA090097
(2009)
Source URL:
First approved in 1956
Source:
NDA010379
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Liothyronine (CYTOMEL®) is a T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than its prohormone thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. The mechanisms by which thyroid hormones exert their physiologic action are not well understood. These hormones enhance oxygen consumption by most tissues of the body, increase the basal metabolic rate and the metabolism of carbohydrates, lipids, and proteins. Thus, they exert a profound influence on every organ system in the body and are of particular importance in the development of the central nervous system. Thyroid hormone drugs are indicated: as the replacement or supplemental therapy in patients with hypothyroidism of any etiology; as pituitary thyroid-stimulating hormone (TSH) suppressants, in the treatment or prevention of various types of euthyroid goiters; as diagnostic agents in suppression tests to differentiate suspected mild hyperthyroidism or thyroid gland autonomy.
Status:
US Approved Rx
(2009)
Source:
ANDA090097
(2009)
Source URL:
First approved in 1956
Source:
NDA010379
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Liothyronine (CYTOMEL®) is a T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than its prohormone thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. The mechanisms by which thyroid hormones exert their physiologic action are not well understood. These hormones enhance oxygen consumption by most tissues of the body, increase the basal metabolic rate and the metabolism of carbohydrates, lipids, and proteins. Thus, they exert a profound influence on every organ system in the body and are of particular importance in the development of the central nervous system. Thyroid hormone drugs are indicated: as the replacement or supplemental therapy in patients with hypothyroidism of any etiology; as pituitary thyroid-stimulating hormone (TSH) suppressants, in the treatment or prevention of various types of euthyroid goiters; as diagnostic agents in suppression tests to differentiate suspected mild hyperthyroidism or thyroid gland autonomy.
Status:
US Approved Rx
(2009)
Source:
ANDA090097
(2009)
Source URL:
First approved in 1956
Source:
NDA010379
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Liothyronine (CYTOMEL®) is a T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than its prohormone thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. The mechanisms by which thyroid hormones exert their physiologic action are not well understood. These hormones enhance oxygen consumption by most tissues of the body, increase the basal metabolic rate and the metabolism of carbohydrates, lipids, and proteins. Thus, they exert a profound influence on every organ system in the body and are of particular importance in the development of the central nervous system. Thyroid hormone drugs are indicated: as the replacement or supplemental therapy in patients with hypothyroidism of any etiology; as pituitary thyroid-stimulating hormone (TSH) suppressants, in the treatment or prevention of various types of euthyroid goiters; as diagnostic agents in suppression tests to differentiate suspected mild hyperthyroidism or thyroid gland autonomy.
Status:
US Approved Rx
(2009)
Source:
ANDA090097
(2009)
Source URL:
First approved in 1956
Source:
NDA010379
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Liothyronine (CYTOMEL®) is a T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than its prohormone thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. The mechanisms by which thyroid hormones exert their physiologic action are not well understood. These hormones enhance oxygen consumption by most tissues of the body, increase the basal metabolic rate and the metabolism of carbohydrates, lipids, and proteins. Thus, they exert a profound influence on every organ system in the body and are of particular importance in the development of the central nervous system. Thyroid hormone drugs are indicated: as the replacement or supplemental therapy in patients with hypothyroidism of any etiology; as pituitary thyroid-stimulating hormone (TSH) suppressants, in the treatment or prevention of various types of euthyroid goiters; as diagnostic agents in suppression tests to differentiate suspected mild hyperthyroidism or thyroid gland autonomy.
Status:
US Approved Rx
(2020)
Source:
ANDA212399
(2020)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levothyroxine (T4) is a synthetically prepared levo isomer of thyroxine, the major hormone secreted from the thyroid gland. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine (T3) which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid hormone increases the metabolic rate of cells of all tissues in the body. In the fetus and newborn, thyroid hormone is important for the growth and development of all tissues including bones and the brain. In adults, thyroid hormone helps to maintain brain function, food metabolism, and body temperature, among other effects. The symptoms of thyroid deficiency relieved by levothyroxine include slow speech, lack of energy, weight gain, hair loss, dry thick skin and unusual sensitivity to cold. Levothyroxine acts like the endogenous thyroid hormone thyroxine (T4, a tetra-iodinated tyrosine derivative). In the liver and kidney, T4 is converted to T3, the active metabolite. In order to increase solubility, the thyroid hormones attach to thyroid hormone binding proteins, thyroxin-binding globulin, and thyroxin-binding prealbumin (transthyretin). Transport and binding to thyroid hormone receptors in the cytoplasm and nucleus then takes place. Thus by acting as a replacement for natural thyroxine, symptoms of thyroxine deficiency are relieved. Levothyroxine is used for use alone or in combination with antithyroid agents to treat hypothyroidism, goiter, chronic lymphocytic thyroiditis, myxedema coma, and stupor.
Status:
US Approved Rx
(2020)
Source:
ANDA212399
(2020)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levothyroxine (T4) is a synthetically prepared levo isomer of thyroxine, the major hormone secreted from the thyroid gland. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine (T3) which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid hormone increases the metabolic rate of cells of all tissues in the body. In the fetus and newborn, thyroid hormone is important for the growth and development of all tissues including bones and the brain. In adults, thyroid hormone helps to maintain brain function, food metabolism, and body temperature, among other effects. The symptoms of thyroid deficiency relieved by levothyroxine include slow speech, lack of energy, weight gain, hair loss, dry thick skin and unusual sensitivity to cold. Levothyroxine acts like the endogenous thyroid hormone thyroxine (T4, a tetra-iodinated tyrosine derivative). In the liver and kidney, T4 is converted to T3, the active metabolite. In order to increase solubility, the thyroid hormones attach to thyroid hormone binding proteins, thyroxin-binding globulin, and thyroxin-binding prealbumin (transthyretin). Transport and binding to thyroid hormone receptors in the cytoplasm and nucleus then takes place. Thus by acting as a replacement for natural thyroxine, symptoms of thyroxine deficiency are relieved. Levothyroxine is used for use alone or in combination with antithyroid agents to treat hypothyroidism, goiter, chronic lymphocytic thyroiditis, myxedema coma, and stupor.
Status:
US Approved Rx
(2020)
Source:
ANDA212399
(2020)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levothyroxine (T4) is a synthetically prepared levo isomer of thyroxine, the major hormone secreted from the thyroid gland. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine (T3) which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid hormone increases the metabolic rate of cells of all tissues in the body. In the fetus and newborn, thyroid hormone is important for the growth and development of all tissues including bones and the brain. In adults, thyroid hormone helps to maintain brain function, food metabolism, and body temperature, among other effects. The symptoms of thyroid deficiency relieved by levothyroxine include slow speech, lack of energy, weight gain, hair loss, dry thick skin and unusual sensitivity to cold. Levothyroxine acts like the endogenous thyroid hormone thyroxine (T4, a tetra-iodinated tyrosine derivative). In the liver and kidney, T4 is converted to T3, the active metabolite. In order to increase solubility, the thyroid hormones attach to thyroid hormone binding proteins, thyroxin-binding globulin, and thyroxin-binding prealbumin (transthyretin). Transport and binding to thyroid hormone receptors in the cytoplasm and nucleus then takes place. Thus by acting as a replacement for natural thyroxine, symptoms of thyroxine deficiency are relieved. Levothyroxine is used for use alone or in combination with antithyroid agents to treat hypothyroidism, goiter, chronic lymphocytic thyroiditis, myxedema coma, and stupor.
Status:
US Approved Rx
(2021)
Source:
ANDA214543
(2021)
Source URL:
First approved in 1950
Source:
NDA007513
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Norepinephrine (l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. Norepinephrine may be used for blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions) and as an adjunct in the treatment of cardiac arrest and profound hypotension. Norepinephrine performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy.If plasma volumes are not corrected, hypotension may recur when Norepinephrine is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g., decreased renal perfusion)with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and possible ischemic injury. Gangrene of extremities has been rarely reported. Overdoses or conventional doses in hypersensitive persons (e.g., hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.
Status:
US Approved Rx
(2021)
Source:
ANDA214543
(2021)
Source URL:
First approved in 1950
Source:
NDA007513
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Norepinephrine (l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. Norepinephrine may be used for blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions) and as an adjunct in the treatment of cardiac arrest and profound hypotension. Norepinephrine performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy.If plasma volumes are not corrected, hypotension may recur when Norepinephrine is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g., decreased renal perfusion)with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and possible ischemic injury. Gangrene of extremities has been rarely reported. Overdoses or conventional doses in hypersensitive persons (e.g., hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.