U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 141 - 150 of 405 results

Status:
US Previously Marketed
First approved in 2006

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Telbivudine is an antiviral drug used in the treatment of hepatitis B infection. It is marketed by Swiss pharmaceutical company Novartis under the trade names Sebivo (Europe) and Tyzeka (United States). Clinical trials have shown it to be significantly more effective than lamivudine or adefovir, and less likely to cause resistance. Telbivudine is a synthetic thymidine nucleoside analogue; it is the L-isomer of thymidine. It is taken orally in a dose of 600 mg once daily with or without food. TYZEKA is the trade name for telbivudine, a synthetic thymidine nucleoside analogue with activity against hepatitis B virus (HBV). The chemical name for telbivudine is 1-((2S,4R,5S)-4-hydroxy-5-hydroxymethyltetrahydrofuran-2-y1)-5-methyl-1H-pyrimidine-2,4-dione, or 1-(2-deoxy-β-L-ribofuranosyl)-5-methyluracil. Telbivudine is a synthetic thymidine nucleoside analogue with activity against HBV DNA polymerase. It is phosphorylated by cellular kinases to the active triphosphate form, which has an intracellular half-life of 14 hours. Telbivudine 5'-triphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate, thymidine 5'-triphosphate. Incorporation of telbivudine 5'-triphosphate into viral DNA causes DNA chain termination, resulting in inhibition of HBV replication. Telbivudine is an inhibitor of both HBV first strand (EC50 value = 1.3 ± 1.6 µM) and second strand synthesis (EC50 value = 0.2 ± 0.2 µM). Telbivudine 5'-triphosphate at concentrations up to 100 µM did not inhibit human cellular DNA polymerases α, β, or γ. No appreciable mitochondrial toxicity was observed in HepG2 cells treated with telbivudine at concentrations up to 10 µM.
French pharmaceutical company Hoechst Marion Roussel (later Sanofi-Aventis) began phase II/III clinical trials of telithromycin (HMR-3647) in 1998. Telithromycin was approved by the European Commission in July 2001 and subsequently went on sale in October 2001. In the US, telithromycin received U.S. Food and Drug Administration (FDA) approval on April 1, 2004 Telithromycin is the first ketolide antibiotic to enter clinical use and is sold under the brand name of Ketek. After significant controversy regarding safety and research fraud, the US Food and Drug Administration sharply curtailed the approved uses of the drug in 2007. Telithromycin is a semi-synthetic erythromycin derivative. It is created by substituting a ketogroup for the cladinose sugar and adding a carbamate ring in the lactone ring. An alkyl-aryl moiety is attached to this carbamate ring. Furthermore, the carbon at position 6 has been methylated, as is the case in clarithromycin, to achieve better acid-stability. For the treatment of Pneumococcal infection, acute sinusitis, acute bacterial tonsillitis, acute bronchitis and bronchiolitis, lower respiratory tract infection and lobar (pneumococcal) pneumonia. KETEK tablets contain telithromycin, a semisynthetic antibacterial in the ketolide class for oral administration. Telithromycin blocks protein synthesis by binding to domains II and V of 23S rRNA of the 50S ribosomal subunit. By binding at domain II, telithromycin retains activity against gram-positive cocci (e.g., Streptococcus pneumoniae) in the presence of resistance mediated by methylases (erm genes) that alter the domain V binding site of telithromycin. Telithromycin may also inhibit the assembly of nascent ribosomal units.
Gemifloxacin is an oral broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. Gemifloxacin mesylate is marketed under the brand name Factive, indicated for the treatment of bacterial infection caused by susceptible strains such as S. pneumoniae, H. influenzae, H. parainfluenzae, or M. catarrhalis, S. pneumoniae (including multi-drug resistant strains [MDRSP]), M. pneumoniae, C. pneumoniae, or K. pneumoniae. Gemifloxacin has in vitro activity against a wide range of Gram-negative and Grampositive microorganisms. Gemifloxacin is bactericidal with minimum bactericidal concentrations (MBCs) generally within one dilution of the minimum inhibitory concentrations (MICs). Gemifloxacin acts by inhibiting DNA synthesis through the inhibition of both DNA gyrase and topoisomerase IV (TOPO IV), which are essential for bacterial growth. Streptococcus pneumoniae showing mutations in both DNA gyrase and TOPO IV (double mutants) are resistant to most fluoroquinolones. Gemifloxacin has the ability to inhibit both enzyme systems at therapeutically relevant drug levels in S. pneumoniae (dual targeting), and has MIC values that are still in the susceptible range for some of these double mutants.
Cefditoren pivoxil is a semi-synthetic cephalosporin antibiotic for oral administration. It is a 3rd generation cephalosporin that is FDA approved for the treatment of acute bacterial exacerbation of chronic bronchitis, community acquired pneumonia, infection of skin and/or subcutaneous tissue, and pharyngitis/tonsillitis. Cefditoren is a cephalosporin with antibacterial activity against gram-positive and gram-negative pathogens. The bactericidal activity of cefditoren results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Common adverse reactions include diarrhea, nausea and candida vaginitis. Co-administration of a single dose of an antacid which contained both magnesium (800 mg) and aluminum (900 mg) hydroxides or co-administration of a single dose of intravenously administered famotidine (20 mg) reduced the oral absorption of a single 400 mg dose of cefditoren pivoxil administered following a meal. Co-administration of probenecid with cefditoren pivoxil resulted in an increase in the plasma exposure of cefditoren.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Delavirdine is a nonnucleoside reverse transcriptase inhibitor (NNRTI). Delavirdine binds directly to reverse transcriptase (RT) and blocks RNA-dependent and DNA-dependent DNA polymerase activities. Delavirdine does not compete with template:primer or deoxynucleoside triphosphates. HIV-2 RT and human cellular DNA polymerases alfa, gamma, or delta are not inhibited by delavirdine. In addition, HIV-1 group O, a group of highly divergent strains that are uncommon in North America, may not be inhibited by delavirdine. Delavirdine is marketed under the trade name Rescriptor, indicated for the treatment of HIV-1 infection in combination with at least 2 other active antiretroviral agents when therapy is warranted. .
Sparfloxacin is a synthetic fluoroquinolone broad-spectrum antimicrobial agent in the same class as ofloxacin and norfloxacin. Sparfloxacin has in vitro activity against a wide range of gram-negative and gram-positive microorganisms. Sparfloxacin exerts its antibacterial activity by inhibiting DNA gyrase, a bacterial topoisomerase. DNA gyrase is an essential enzyme which controls DNA topology and assists in DNA replication, repair, deactivation, and transcription. Quinolones differ in chemical structure and mode of action from (beta)-lactam antibiotics. Quinolones may, therefore, be active against bacteria resistant to (beta)-lactam antibiotics. Although cross-resistance has been observed between sparfloxacin and other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to sparfloxacin. In vitro tests show that the combination of sparfloxacin and rifampin is antagonistic against Staphylococcus aureus. The bactericidal action of sparfloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, and recombination. Sparfloxacin is used for the treatment of adults with the following infections caused by susceptible strains microorganisms: community-acquired pneumonia (caused by Chlamydia pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella catarrhalis, Mycoplasma pneumoniae, or Streptococcus pneumoniae) and acute bacterial exacerbations of chronic bronchitis (caused by Chlamydia pneumoniae, Enterobacter cloacae, Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis,Staphylococcus aureus, or Streptococcus pneumoniae). Sparfloxacin has trade names Spacin in Bangladesh, Zagam and Zagam Respipac. Zagam is no longer available in the United States.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Saquinavir (brand names Invirase and Fortovase) is an antiretroviral drug used together with other medications to treat or prevent HIV/AIDS. Saquinavir is an inhibitor of HIV protease. HIV protease is an enzyme required for the proteolytic cleavage of viral polyprotein precursors into individual functional proteins found in infectious HIV. Saquinavir is a peptide-like substrate analog that binds to the protease active site and inhibits the activity of the enzyme. Saquinavir inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature noninfectious virus particles. The most frequent adverse events with saquinavir in either formulation are mild gastrointestinal symptoms, including diarrhea, nausea, loose stools & abdominal discomfort. Invirase is better tolerated than Fortovase.
Dirithromycin (Dynabac) is a macrolide glycopeptide antibiotic used to treat different types of bacterial infections, such as bronchitis, pneumonia, tonsillitis, skin infections. Dirithromycin is a semi-synthetic derivative of erythromycin - the hemi-aminal resulting from the condensation of (9S)-erythromycyclamine with 2-(2-methoxyethoxy) acetaldehyde. Being unstable under both acidic and alkaline conditions, dirithromycin functions as a more lipid-soluble prodrug for (9S)-erythromycyclamine. Erythromycylamine exerts its activity by binding to the 50S ribosomal subunits of susceptible mircoorganisms resulting in inhibition of protein synthesis. Dirithromycin has been shown to be active against most strains of the following microorganisms both in vitro and in clinical infections: Staphylococcus aureus (methicillin-susceptible strains only), Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, Legionella pneumophila, Moraxella catarrhalis, and Mycoplasma pneumoniae. Dirithromycin showed better activity in vitro against Campylobacter jejuni and Borrelia burgdorferi than erythromycin or clarithromycin but in general demonstrated less activity than erythromycin, clarithromycin, or azithromycin against a majority of microorganisms. The pharmacokinetic profile of dirithromycin has advantages over other microlides of once-daily dosing and high and prolonged tissue concentrations but adverse effect profiles similar to those of the other macrolides, with reported problems most often related to the gastrointestinal tract.
Ceftibuten is a 3rd generation cephalosporin that is FDA approved for the treatment of acute bacterial exacerbations of chronic bronchitis, acute bacterial otitis media, pharyngitis and tonsillitis. Ceftibuten exerts its bactericidal action by binding to essential target proteins of the bacterial cell wall. This binding leads to inhibition of cell-wall synthesis. Common adverse reactions include diarrhea, nausea, vomiting and headache. The effect of increased gastric pH on the bioavailability of ceftibuten was evaluated in 18 healthy adult volunteers. Each volunteer was administered one 400-mg ceftibuten capsule. A single dose of liquid antacid did not affect the Cmax or AUC of ceftibuten; however, 150 mg of ranitidine q12h for 3 days increased the ceftibuten Cmax by 23% and ceftibuten AUC by 16%.

Showing 141 - 150 of 405 results