U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 121 - 130 of 408 results


Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Temazepam is a benzodiazepine used as a hypnotic agent in the management of insomnia. Temazepam produces CNS depression at limbic, thalamic, and hypothalamic levels of the CNS. Temazepam increases the affinity of the neurotransmitter gamma-aminobutyric acid (GABA) for GABA receptors by binding to benzodiazepine receptors. Results are sedation, hypnosis, skeletal muscle relaxation, anticonvulsant activity, and anxiolytic action. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Temazepam is used for the short-term treatment of insomnia (generally 7-10 days).

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Sucralfate (trade name CARAFATE) is a medication primarily taken to treat active duodenal ulcers. Sucralfate is also used for the treatment of gastroesophageal reflux disease (GERD) and stress ulcers. Sucralfate is a sucrose sulfate-aluminium complex that binds to the ulcer, creating a physical barrier that protects the gastrointestinal tract from stomach acid and prevents the degradation of mucus. Sucralfate is only minimally absorbed from the gastrointestinal tract. The small amounts of the sulfated disaccharide that are absorbed are excreted primarily in the urine.
Ecraprost [AS 013, Circulase] is a prodrug of prostaglandin E(1) within lipid microspheres that is being developed in Japan by Mitsubishi Pharma Corporation and Asahi Glass. It was originally in development with Welfide Corporation. On 1 October 2001, Welfide Corporation (formerly Yoshitomi) merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. Taisho and Seikagaku Corporation had been involved in the development of ecraprost but discontinued their licences to do so. The effects of ecraprost on reperfusion injury, in preclinical studies, had been reported by Taisho. Ecraprost is in phase II in Japan and was in phase II in Europe for the treatment of peripheral arterial disease. It was also in a phase II study in the treatment of diabetic neuropathies. However, this is no longer an active indication. A phase III trial using a lipid emulsion of ecraprost [Circulase] is underway with Mitsubishi Pharma Corporation in the US, using ecraprost for the treatment of patients with severe peripheral arterial disease, which, because of decreased blood flow to the extremities, can lead to painful ulcers on the legs and feet and subsequent amputation. Alpha Therapeutic Corporation (a former subsidiary of Mitsubishi Pharma) was initially involved in trials of ecraprost in the US, but this responsibility has been taken over by the parent company.
Gemfibrozil, a fibric acid antilipemic agent similar to clofibrate, is used to treat hyperlipoproteinemia and as a second-line therapy for type IIb hypercholesterolemia. It acts to reduce triglyceride levels, reduce VLDL levels, reduce LDL levels (moderately), and increase HDL levels (moderately). Gemfibrozil increases the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis. It does so by activating Peroxisome proliferator-activated receptor-alpha (PPARα) 'transcription factor ligand', a receptor that is involved in metabolism of carbohydrates and fats, as well as adipose tissue differentiation. This increase in the synthesis of lipoprotein lipase thereby increases the clearance of triglycerides. Chylomicrons are degraded, VLDLs are converted to LDLs, and LDLs are converted to HDL. This is accompanied by a slight increase in secretion of lipids into the bile and ultimately the intestine. Gemfibrozil also inhibits the synthesis and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. Gemfibrozil is most commonly sold as the brand name, Lopid. Other brand names include Jezil and Gen-Fibro.
Ketoconazole is an azole antifungal. Ketoconazole was the first broad-spectrum oral antifungal agent available to treat systemic and superficial mycoses. Evidence of hepatotoxicity associated with its use emerged within the first few years of its approval. Due to its hepatotoxic side effects, oral ketoconazole was withdrawn from the European and Australian markets in 2013. The United States imposed strict relabeling requirements and restrictions for prescription, with Canada issuing a risk communication echoing these concerns. Today, oral ketoconazole is only indicated for endemic mycoses, where alternatives are not available or feasible. Meanwhile, topical ketoconazole is effective, safe, and widely prescribed for superficial mycoses, particularly as the first-line treatment for tinea versicolor. Topically administered ketoconazole is usually prescribed for fungal infections of the skin and mucous membranes, such as athlete's foot, ringworm, candidiasis (yeast infection or thrush), jock itch, and tinea versicolor. Topical ketoconazole is also used as a treatment for dandruff (seborrheic dermatitis of the scalp) and for seborrheic dermatitis on other areas of the body, perhaps acting in these conditions by suppressing levels of the fungus Malassezia furfur on the skin. Ketoconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary for the conversion of lanosterol to ergosterol. This results in inhibition of ergosterol synthesis and increased fungal cellular permeability. Other mechanisms may involve the inhibition of endogenous respiration, interaction with membrane phospholipids, inhibition of yeast transformation to mycelial forms, inhibition of purine uptake, and impairment of triglyceride and/or phospholipid biosynthesis. Ketoconazole can also inhibit the synthesis of thromboxane and sterols such as aldosterone, cortisol, and testosterone. Ketoconazole is active against clinical infections with Blastomyces dermatitidis, Coccidioides immitis, Histoplasma capsulatum, Paracoccidioides brasiliensis.

Class (Stereo):
CHEMICAL (ACHIRAL)



Alprazolam, a benzodiazepine, is used to treat panic disorder and anxiety disorder. Unlike chlordiazepoxide, clorazepate, and prazepam, alprazolam has a shorter half-life and metabolites with minimal activity. Alprazolam may have significant drug interactions involving the hepatic cytochrome P-450 3A4 isoenzyme. Clinically, all benzodiazepines cause a dose-related central nervous system depressant activity varying from mild impairment of task performance to hypnosis. Unlike other benzodiazepines, alprazolam may also have some antidepressant activity, although clinical evidence of this is lacking. CNS agents of the 1,4 benzodiazepine class presumably exert their effects by binding at stereo specific receptors at several sites within the central nervous system. Their exact mechanism of action is unknown. Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Piperacillin is a semisynthetic, broad-spectrum, ampicillin derived ureidopenicillin antibiotic which exerts bactericidal activity by inhibiting septum formation and cell wall synthesis of susceptible bacteria. Piperacillin sodium salt is used in combination with the β-lactamase inhibitor tazobactam sodium (ZOSYN®) for the treatment of patients with moderate to severe infections caused by susceptible bacteria.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Trifluridine (also called trifluorothymidine or TFT) is an anti-herpesvirus antiviral drug, used primarily on the eye. It was sold under the trade name, Viroptic, by Glaxo Wellcome, now merged into GlaxoSmithKline. It is a nucleoside analogue, a modified form of deoxyuridine, similar enough to be incorporated into viral DNA replication, but the -CF3 group added to the uracil component blocks base pairing, thus interfering with DNA replication. It is a component of the experimental anti-cancer drug TAS-102. Trifluridine is a fluorinated pyrimidine nucleoside with in vitro and in vivo activity against herpes simplex virus, types 1 and 2 and vaccinia virus. Some strains of adenovirus are also inhibited in vitro. VIROPTIC is also effective in the treatment of epithelial keratitis that has not responded clinically to the topical administration of idoxuridine or when ocular toxicity or hypersensitivity to idoxuridine has occurred. In a smaller number of patients found to be resistant to topical vidarabine, VIROPTIC was also effective. The mechanism of action of trifluridine has not been fully determined, but appears to involve the inhibition of viral replication. Trifluridine does this by incorporating into viral DNA during replication, which leads to the formation of defective proteins and an increased mutation rate.
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Cefaclor is a semisynthetic cephalosporin antibiotic for oral administration. As with other cephalosporins, the bactericidal action of Cefaclor results from inhibition of cell-wall synthesis. Cefaclor is indicated in the treatment of the following infections when caused by susceptible strains of the designated microorganisms: Otitis media caused by Streptococcus pneumoniae, Haemophilus influenzae, staphylococci, and Streptococcus pyogenes; Lower respiratory tract infections, including pneumonia, caused by Streptococcus pneumoniae, Haemophilus influenzae, and Streptococcus pyogenes; Pharyngitis and Tonsillitis, caused by Streptococcus pyogenes; Urinary tract infections, including pyelonephritis and cystitis, caused by Escherichia coli, Proteus mirabilis, Klebsiella spp., and coagulase-negative staphylococci; Skin and skin structure infections caused by Staphylococcus aureus and Streptococcus pyogenes. Adverse effects considered to be related to therapy with cefaclor are: Hypersensitivity reactions, Rarely, reversible hyperactivity, agitation, nervousness, insomnia, confusion, hypertonia, dizziness, hallucinations, somnolence and diarrhea. Patients receiving Cefaclor may show a false-positive reaction for glucose in the urine with tests that use Benedict's and Fehling's solutions and also with Clinitest® tablets. There have been reports of increased anticoagulant effect when Cefaclor and oral anticoagulants were administered concomitantly.

Showing 121 - 130 of 408 results