{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for alpha root_names_name in Any Name (approximate match)
Status:
US Previously Marketed
Source:
MAXAIR by BAUSCH
(1986)
Source URL:
First approved in 1986
Source:
MAXAIR by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.
Status:
First approved in 1985
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Suprafen is a dual inhibitor of COX-1 and COX-2, which was used for the inhibition of intraoperative miosis. Suprafen was marketed under the name Profenal, however, it is no longer available in the USA.
Status:
US Previously Marketed
Source:
MONOCID by GLAXOSMITHKLINE
(1984)
Source URL:
First approved in 1984
Source:
MONOCID by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefonicid is a semi-synthetic broad-spectrum cephalosporin antibiotic resistant to beta-lactamases. Similarly to other cephalosporins, cefonicid exerts its antibacterial activity through the inhibition of the bacterial cell-wall synthesis. Its in vitro and in vivo activity against a wide range of Gram-positive and Gram-negative microorganisms is documented.
Status:
US Previously Marketed
Source:
MONOCID by GLAXOSMITHKLINE
(1984)
Source URL:
First approved in 1984
Source:
MONOCID by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefonicid is a semi-synthetic broad-spectrum cephalosporin antibiotic resistant to beta-lactamases. Similarly to other cephalosporins, cefonicid exerts its antibacterial activity through the inhibition of the bacterial cell-wall synthesis. Its in vitro and in vivo activity against a wide range of Gram-positive and Gram-negative microorganisms is documented.
Status:
US Previously Marketed
Source:
TORNALATE by SANOFI AVENTIS US
(1984)
Source URL:
First approved in 1984
Source:
TORNALATE by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bitolterol is a beta 2-adrenergic agonist. Since it in itself is biologically inactive, bitolterol is considered a pro-drug. When administered it is activated within the lung by esterase hydrolysis to the active compound colterol catecholamine N-t-butyl-arterenol. Bitolterol was marked under the name tornalate and was indicated to prevent and treat of reversible bronchospasm associated with asthma or chronic obstructive pulmonary diseases. But that drug was withdrawn from the market by Elan Pharmaceuticals in 2001.
Status:
US Previously Marketed
Source:
CEFIZOX by ASTELLAS
(1994)
Source URL:
First approved in 1983
Source:
CEFIZOX by ASTELLAS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ceftizoxime is a semisynthetic cephalosporin antibiotic, which can be administered intravenously or intramuscularly. It was sold under brand name, cefizox, but was removed from the US Market in 2007. Cefizox was used to treat different infections, such as lower respiratory tract infections caused by Klebsiella spp.; Proteus mirabilis; Escherichia coli; Haemophilus influenza; urinary tract Infections caused by Staphylococcus aureus (penicillinase¬ and nonpenicillinase¬producing); Escherichia coli; Pseudomonas spp. Also for treatment of gonorrhea including uncomplicated cervical and urethral gonorrhea caused by Neisseria gonorrhoeae; pelvic inflammatory disease caused by Neisseria gonorrhoeae, Escherichia coli or Streptococcus agalactiae; meningitis caused by Haemophilus influenza. In addition, some others infections. Cefizox has also been used successfully in the treatment of a limited number of pediatric and adult cases of meningitis caused by Streptococcus pneumoniae. Infections caused by aerobic gram ¬negative and by mixtures of organisms resistant to other cephalosporins, aminoglycosides, or penicillins have responded to treatment with Cefizox. The bactericidal action of ceftizoxime results from inhibition of the third and last stage of bacterial cell wall synthesis. Bacterial cell wall autolytic enzymes such as autolysins then mediate cell lysis; it is possible that ceftizoxime interferes with an autolysin inhibitor. Ceftizoxime is highly resistant to a broad spectrum of beta -lactamases (penicillinase and cephalosporinase), including Richmond types II, III, TEM, IV, produced by both aerobic and anaerobic gram - positive and gram - negative organisms and I.
Status:
US Previously Marketed
Source:
CEFIZOX by ASTELLAS
(1994)
Source URL:
First approved in 1983
Source:
CEFIZOX by ASTELLAS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ceftizoxime is a semisynthetic cephalosporin antibiotic, which can be administered intravenously or intramuscularly. It was sold under brand name, cefizox, but was removed from the US Market in 2007. Cefizox was used to treat different infections, such as lower respiratory tract infections caused by Klebsiella spp.; Proteus mirabilis; Escherichia coli; Haemophilus influenza; urinary tract Infections caused by Staphylococcus aureus (penicillinase¬ and nonpenicillinase¬producing); Escherichia coli; Pseudomonas spp. Also for treatment of gonorrhea including uncomplicated cervical and urethral gonorrhea caused by Neisseria gonorrhoeae; pelvic inflammatory disease caused by Neisseria gonorrhoeae, Escherichia coli or Streptococcus agalactiae; meningitis caused by Haemophilus influenza. In addition, some others infections. Cefizox has also been used successfully in the treatment of a limited number of pediatric and adult cases of meningitis caused by Streptococcus pneumoniae. Infections caused by aerobic gram ¬negative and by mixtures of organisms resistant to other cephalosporins, aminoglycosides, or penicillins have responded to treatment with Cefizox. The bactericidal action of ceftizoxime results from inhibition of the third and last stage of bacterial cell wall synthesis. Bacterial cell wall autolytic enzymes such as autolysins then mediate cell lysis; it is possible that ceftizoxime interferes with an autolysin inhibitor. Ceftizoxime is highly resistant to a broad spectrum of beta -lactamases (penicillinase and cephalosporinase), including Richmond types II, III, TEM, IV, produced by both aerobic and anaerobic gram - positive and gram - negative organisms and I.
Status:
US Previously Marketed
Source:
NETROMYCIN by SCHERING
(1983)
Source URL:
First approved in 1983
Source:
NETROMYCIN by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Netilmicin is a semisynthetic, water soluble antibiotic of the aminoglycoside group, produced by the fermentation of Micromonospora inyoensis, a species of actinomycete. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. It is active at low concentrations against a wide variety of pathogenic bacteria including Escherichia coli, bacteria of the Klebsiella-Enterobacter-Serratia group, Citrobacter sp., Proteus sp. (indole-positive and indole-negative), including Proteus mirabilis, P. morganii, P. rettgrei, P. vulgaris, Pseudomonas aeruginosa and Neisseria gonorrhoea. Netilmicin is also active in vitro against isolates of Hemophilus influenzae, Salmonella sp., Shigella sp. and against penicillinase and non-penicillinase-producing Staphylococcus including methicillin-resistant strains. Some strains of Providencia sp., Acinetobacter sp. and Aeromonas sp. are also sensitive to netilmicin. Many strains of the above organisms which are found to be resistant to other aminoglycosides, such as kanamycin, gentamicin, tobramycin and sisomicin, are susceptible to netilmicin in vitro. Occasionally, strains have been identified which are resistant to amikacin but susceptible to netilmicin. The combination of netilmicin and penicillin G has a synergistic bactericidal effect against most strains of Streptococcus faecalis (enterococcus). The combined effect of netilmicin and carbenicillin or ticarcillin is synergistic for many strains of Pseudomonas aeruginosa. In addition, many isolates of Serratia, which are resistant to multiple antibiotics, are inhibited by synergistic combinations of netilmicin with carbenicillin, azlocillin, mezlocillin, cefamandole, cefotaxime or moxalactam. Netilmicin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Specifically netilmicin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes, leaving the bacterium unable to synthesize proteins vital to its growth.
Status:
First approved in 1982
Class (Stereo):
CHEMICAL (RACEMIC)
BENOXAPROFEN is an anti-inflammatory drug indicated for the treatment of arthritis. It was marketed under the brand name ORAFLEX® in the US and as OPREN® in Europe by Eli Lilly and Company. In 1982 Eli Lilly voluntarily withdrew BENOXAPROFEN from the market due to postmarketing reports of severe liver toxicity in patients who took it.
Status:
First approved in 1982
Class (Stereo):
CHEMICAL (RACEMIC)
BENOXAPROFEN is an anti-inflammatory drug indicated for the treatment of arthritis. It was marketed under the brand name ORAFLEX® in the US and as OPREN® in Europe by Eli Lilly and Company. In 1982 Eli Lilly voluntarily withdrew BENOXAPROFEN from the market due to postmarketing reports of severe liver toxicity in patients who took it.