{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for dexamethasone root_names_stdName in Standardized Name (approximate match)
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Approved Rx
(2019)
Source:
ANDA209382
(2019)
Source URL:
First approved in 2002
Source:
NDA021272
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Treprostinil (marketed under the trade names Remodulin for infusion) is a vasodilator that is used for the treatment of pulmonary arterial hypertension. Pulmonary arterial hypertension (PAH) is a disease in which blood pressure is abnormally high in the arteries between the heart and lungs. PAH is characterized by symptoms of shortness of breath during physical exertion. The condition can ultimately lead to heart failure. Treprostinil is a potent oral antiplatelet agent. The major pharmacologic actions of treprostinil are direct vasodilation of pulmonary and systemic arterial vascular beds and inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. Other studies have shown that treprostinil causes a dose-related negative inotropic and lusitropic effect. No major effects on cardiac conduction have been observed. Treprostinil had high affinity for the Prostaglandin D2 receptor (DP1), Prostaglandin E2 receptor EP2 subtype (EP2) and Prostaglandin D2 receptor (IP) receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, Prostaglandin F (FP) and thromboxane (TP) receptors. Treprostinil has demonstrated a unique effect on PPAR gamma, a transcription factor important in vascular pathogenesis as a mediator of proliferation, inflammation and apoptosis. Through a complementary, yet cyclic AMP-independent pathway, treprostinil activates PPARs, another mechanism that contributes to the anti-growth benefits of the prostacyclin class.
Status:
US Approved Rx
(2021)
Source:
ANDA213541
(2021)
Source URL:
First approved in 2001
Source:
NDA021356
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
(R)-9-(2-Phosphonylmethoxypropyl)adenine (PMPA known as tenofovir) is an antiviral drug. Diphosphate of PMPA acts as a selective inhibitor of the HIV-1 reverse
transcriptase. Tenofovir disoproxil was approved for clinical use for the treatment of HIV infection (AIDS) and chronic HBV infection.
Status:
US Approved Rx
(2016)
Source:
ANDA204060
(2016)
Source URL:
First approved in 1999
Source:
AGENERASE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
US Approved Rx
(2016)
Source:
ANDA204060
(2016)
Source URL:
First approved in 1999
Source:
AGENERASE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
US Approved Rx
(2018)
Source:
ANDA209438
(2018)
Source URL:
First approved in 1999
Source:
NDA021087
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Oseltamivir phosphate is an ethyl ester prodrug requiring ester hydrolysis for conversion
to the active form, oseltamivir carboxylate. Oseltamivir carboxylate is an inhibitor of
influenza virus neuraminidase affecting release of viral particles. Oseltamivir is a well tolerated orally active neuraminidase inhibitor which significantly reduces the duration of symptomatic illness and hastens the return to normal levels of activity when initiated promptly in patients with naturally acquired influenza.
Status:
US Approved Rx
(2016)
Source:
ANDA204060
(2016)
Source URL:
First approved in 1999
Source:
AGENERASE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
US Approved Rx
(2018)
Source:
ANDA204717
(2018)
Source URL:
First approved in 1995
Source:
NDA020297
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Carvedilol competitively blocks β1, β2 and α1 receptors. The drug lacks sympathomimetic activity and has vasodilating properties that are exerted primarily through α1-blockade. Animal models indicate that carvedilol confers protection against myocardial necrosis, arrhythmia and cell damage caused by oxidising free radicals, and the drug has no adverse effects on plasma lipid profiles. COREG® (carvedilol) is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol is the first drug of its kind to be approved for the treatment of congestive heart failure, and is now the standard of care for this devastating disease. Carvedilol is also confirmed as effective in the management of mild to moderate hypertension and ischaemic heart disease.
Status:
US Approved Rx
(2018)
Source:
ANDA204717
(2018)
Source URL:
First approved in 1995
Source:
NDA020297
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Carvedilol competitively blocks β1, β2 and α1 receptors. The drug lacks sympathomimetic activity and has vasodilating properties that are exerted primarily through α1-blockade. Animal models indicate that carvedilol confers protection against myocardial necrosis, arrhythmia and cell damage caused by oxidising free radicals, and the drug has no adverse effects on plasma lipid profiles. COREG® (carvedilol) is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol is the first drug of its kind to be approved for the treatment of congestive heart failure, and is now the standard of care for this devastating disease. Carvedilol is also confirmed as effective in the management of mild to moderate hypertension and ischaemic heart disease.
Status:
US Approved Rx
(2018)
Source:
ANDA204717
(2018)
Source URL:
First approved in 1995
Source:
NDA020297
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Carvedilol competitively blocks β1, β2 and α1 receptors. The drug lacks sympathomimetic activity and has vasodilating properties that are exerted primarily through α1-blockade. Animal models indicate that carvedilol confers protection against myocardial necrosis, arrhythmia and cell damage caused by oxidising free radicals, and the drug has no adverse effects on plasma lipid profiles. COREG® (carvedilol) is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol is the first drug of its kind to be approved for the treatment of congestive heart failure, and is now the standard of care for this devastating disease. Carvedilol is also confirmed as effective in the management of mild to moderate hypertension and ischaemic heart disease.