{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
lactic acid
to a specific field?
Status:
US Approved Rx
(2014)
Source:
NDA203108
(2014)
Source URL:
First approved in 2014
Source:
NDA203108
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Olodaterol is a beta2-adrenoceptor agonist discovered by Boehringer Ingelheim and approved for the treatment of Chronic Obstructive Pulmonary Disease. The compound exerts its pharmacological effects by binding and activation of beta2-adrenoceptors after inhalation. Activation of these receptors in the airways results in a stimulation of intracellular adenyl cyclase, an enzyme that mediates the synthesis of cyclic-3’, 5’ adenosine monophosphate (cAMP). Elevated levels of cAMP induce bronchodilation by relaxation of airway smooth muscle cells. Olodaterol effect lasts for 24 hours.
Status:
US Approved Rx
(2023)
Source:
ANDA211654
(2023)
Source URL:
First approved in 2014
Source:
NDA205677
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tasimelteon, developed by Vanda Pharmaceuticals Inc under license from Bristol-Myers Squibb Co, is a melatonin receptor agonist. Tasimelteon differs structurally from melatonin and drugs with known melatonin agonist activity, in particular by its distinct aromatic group and linker. Tasimelteon bears also no structural relationship to any other approved active substance. Tasimelteon is presumably acts through activation of MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. Tasimelteon is approved for the treatment of Non24-Hour Sleep-Wake Disorder.
Status:
US Approved Rx
(2024)
Source:
ANDA211734
(2024)
Source URL:
First approved in 2014
Source:
NDA205437
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Apremilast (brand name Otezla) selective inhibitor of phosphodiesterase 4 is used for the treatment of patients with moderate to severe plaque psoriasis. OTEZLA is the first and only PDE4 inhibitor approved for the treatment of plaque psoriasis, a chronic inflammatory disease of the skin resulting from an uncontrolled immune response. Apremilast also inhibits spontaneous production of TNF-alpha from human rheumatoid synovial cells. It has anti-inflammatory activity. By inhibiting PDE-4, apremilast increases intracellular levels of cAMP and thereby inhibits the production of multiple proinflammatory mediators including PDE-4, TNF-alpha, interleukin-2 (IL-2), interferon-gamma, leukotrienes, and nitric oxide synthase.
Status:
US Approved Rx
(2014)
Source:
NDA206426
(2014)
Source URL:
First approved in 2014
Source:
NDA206426
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Peramivir is a transition-state analogue and a potent, specific influenza viral neuraminidase inhibitor. Rapivab (peramivir injection) is indicated for the treatment of acute uncomplicated influenza in patients 18 years and older who have been symptomatic for no more than 2 days. Efficacy of Rapivab is based on clinical trials in which the predominant influenza virus type was influenza A and a limited number of subjects infected with influenza B virus were enrolled. Since influenza viruses change over time emergence of resistance substitutions could decrease drug effectiveness. Other factors such as changes in viral virulence might also diminish clinical benefit of antiviral drug. Efficacy could not be established in patients with serious influenza requiring hospitalization.
Status:
US Approved Rx
(2014)
Source:
NDA206256
(2014)
Source URL:
First approved in 2014
Source:
NDA206256
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Belinostat is a hydroxamate-type histone deacetylase inhibitor indicated for the treatment of relapsed or refractory peripheal T-cell lymphoma. The compound received orphan drug designation for the treatment of malignant thymomas. Acting on a histone deacetylase Belinostat causes the accumulation of acetylated histones and other proteins, inducing cell cycle arrest and/or apoptosis of some transformed cells. Belinostat targets HDAC enzymes, thereby inhibiting tumor cell proliferation, inducing apoptosis, promoting cellular differentiation, and inhibiting angiogenesis. This agent may sensitize drug-resistant tumor cells to other antineoplastic agents, possibly through a mechanism involving the down-regulation of thymidylate synthase. PXD101 has been shown in preclinical studies to have the potential to treat a wide range of solid and hematologic malignancies either as a monotherapy or in combination with other active agents, and both an oral and intravenous formulation of the drug are being evaluated in clinical trials.
Status:
US Approved Rx
(2013)
Source:
NDA204410
(2013)
Source URL:
First approved in 2013
Source:
NDA204410
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Macitentan is an orally active, dual endothelin receptor antagonist with tissue targeting properties. Macitentan inhibits both ETA and ETB receptors and prevents them from binding to ET-1. Macitentan displays high affinity and sustained occupancy of the ET receptors in human pulmonary arterial smooth muscle cells. One of the metabolites of macitentan is also pharmacologically active at the ET receptors and is estimated to be about 20% as potent as the parent drug in vitro. Macitentan is approved in the EU (as monotherapy or combination therapy) for the long-term treatment of pulmonary arterial hypertension (PAH) in adults of WHO functional class II or III, and in the USA for the treatment of PAH (WHO group I) to delay disease progression and reduce hospitalization for PAH.
Status:
US Approved Rx
(2013)
Source:
NDA204447
(2013)
Source URL:
First approved in 2013
Source:
NDA204447
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Vortioxetine is an antidepressant for the treatment of major depressive disorder. Vortioxetine’s mechanism of action is not fully understood. Vortioxetine binds with high affinity to the serotonin transporter and its antidepressant actions are believed to be secondary to enhancing serotonin in the central nervous system through inhibition of reuptake. Vortioxetine also displays binding affinities to other serotonin (5-HT) receptors, including 5-HT3, 5-HT1A, and 5-HT7. Due to multimodal neurotransmitter enhancer profile, it has been suggested that it might need lesser receptor occupancy rate for clinical trials than other selective serotonin reuptake inhibitors and selective norepinephrine reuptake inhibitors. Since vortioxetine is an agonist and antagonist of multiple serotonin receptors, potential interactions may occur with other medications that alter the serotonergic pathways. There is an increased risk of serotonin syndrome when vortioxetine is used in combination with other serotonergic agents.
Status:
US Approved Rx
(2024)
Source:
ANDA215574
(2024)
Source URL:
First approved in 2013
Source:
NDA203505
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ospemifene (commercial name Osphena produced by Shionogi) is anoral medication indicated for the treatment of dyspareunia – pain during sexual intercourse – encountered by some women, more often in those who are post-menopausal. Ospemifene is a selective estrogen receptor modulator (SERM) that selectively binds to estrogen receptors and either stimulates or blocks estrogen's activity in different tissue types. It has an agonistic effect on the endometrium. It’s building vaginal wall thickness which in turn reduces the pain associated with dyspareunia. Dyspareunia is most commonly caused by "vulval and vaginal atrophy”.
Status:
US Approved Rx
(2017)
Source:
NDA209482
(2017)
Source URL:
First approved in 2013
Source:
NDA204275
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Vilanterol (INN, USAN) is an ultra-long-acting β2 adrenoreceptor agonist (ultra-LABA), which was approved in May 2013 in combination with fluticasone furoate for sale as Breo Ellipta by GlaxoSmithKline for the treatment of chronic obstructive pulmonary disease (COPD). Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3’,5’-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs. Vilanterol is available in following combinations: a) with inhaled corticosteroid fluticasone furoate — fluticasone furoate/vilanterol (trade names Breo Ellipta , Relvar Ellipta; b) with muscarinic antagonist umeclidinium bromide — umeclidinium bromide/vilanterol (trade name Anoro Ellipta).
Status:
US Approved Rx
(2014)
Source:
NDA204353
(2014)
Source URL:
First approved in 2013
Source:
NDA204042
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Canagliflozin (INN, trade name Invokana or Sulisent) is a drug of the gliflozin class. It was developed by Mitsubishi Tanabe Pharma and is marketed under license by Janssen, a division of Johnson & Johnson. Canagliflozin is an antidiabetic drug used to improve glycemic control in people with type 2 diabetes. Sodium-glucose co-transporter 2 (SGLT2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Canagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, canagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases urinary glucose excretion. In extensive clinical trials, canagliflozin produced a consistent dose-dependent reduction in HbA1c of 0.77% to 1.16% when administered as monotherapy, combination with metformin, combination with metformin and a sulfonylurea, combination with metformin and pioglitazone, and in combination with insulin from a baselines of 7.8% to 8.1%, in combination with metformin, or in combination with metformin and a sulfonylurea. When added to metformin, canagliflozin 100 mg was shown to be non-inferior to both sitagliptin 100 mg and glimepiride in reductions on HbA1c at one year, whilst canagliflozin 300 mg successfully demonstrated statistical superiority over both sitagliptin and glimiperide in HbA1c reductions. Secondary efficacy endpoint of superior body weight reduction and blood pressure reduction (versus sitagliptin and glimiperide)) were observed as well. Canagliflozin produces beneficial effects on HDL cholesterol whilst increasing LDL cholesterol to produce no change in total cholesterol.