U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 101 - 110 of 4016 results


Class (Stereo):
CHEMICAL (ACHIRAL)



Vismodegib (trade name Erivedge) is a drug for the treatment of basal-cell carcinoma (BCC). It was approved by FDA on January 30, 2012 and by the European Commission on 12 July 2013, for the treatment of adult patients with symptomatic metastatic BCC, or locally advanced BCC inappropriate for surgery or radiotherapy. The drug is also undergoing clinical trials for metastatic colorectal cancer, small-cell lung cancer, advanced stomach cancer, pancreatic cancer, medulloblastoma and chondrosarcoma as of June 2011. The substance acts as a cyclopamine-competitive antagonist of the smoothened receptor (SMO) which is part of the hedgehog signaling pathway. The Hedgehog signaling pathway plays an important role in tissue growth and repair; aberrant constitutive activation of Hedgehog pathway signaling and uncontrolled cellular proliferation may be associated with mutations in the Hedgehog-ligand cell surface receptors PTCH and SMO. SMO inhibition causes the transcription factors GLI1 and GLI2 to remain inactive, which prevents the expression of tumor mediating genes within the hedgehog pathway. This pathway is pathogenetically relevant in more than 90% of basal-cell carcinomas.
Pasireotide is a synthetic long-acting cyclic hexapeptide with somatostatin-like activity. It is marketed as a diaspartate salt called Signifor, indicated for the treatment of adult patients with Cushing’s disease for whom pituitary surgery is not an option or has not been curative. SIGNIFOR is an injectable cyclohexapeptide somatostatin analogue. Pasireotide exerts its pharmacological activity via binding to somatostatin receptors (ssts). Pasireotide binds and activates the hsst receptors resulting in inhibition of ACTH secretion, which leads to decreased cortisol secretion.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Avanafil is a PDE5 inhibitor approved for erectile dysfunction by FDA and by EMA. Avanafil is known by the trademark names Stendra and Spedra and was developed by Vivus Inc. Avanafil selectively inhibits PDE5, thus inhibiting the degradation of cyclic guanosine monophosphate (cGMP) found in the smooth muscle of the corpus cavernosa of the penis. The physiologic mechanism of erection of the penis involves release of nitric oxide (NO) in the corpus cavernosum during sexual stimulation. NO then activates the enzyme guanylate cyclase, which results in increased levels of cGMP, producing smooth muscle relaxation in the corpus cavernosum and allowing inflow of blood. Avanafil has no direct relaxant effect on isolated human corpus cavernosum, but enhances the effect of NO by inhibiting PDE5, which is responsible for degradation of cGMP in the corpus cavernosum. Because sexual stimulation is required to initiate the local release of nitric oxide, the inhibition of PDE5 has noeffect in the absence of sexual stimulation. The advantage of avanafil is that it has very fast onset of action compared with other PDE5 inhibitors. It is absorbed quickly, reaching a maximum concentration in about 30–45 minutes. About two-thirds of the participants were able to engage in sexual activity within 15 minutes.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cobicistat (GS-9350) is a potent, and selective inhibitor of human cytochrome P450 3A (CYP3A) enzymes. Cobicistat is a pharmacokinetic booster of several antiretrovirals. TYBOST (cobicistat) is indicated to increase systemic exposure of atazanavir or darunavir in combination with other antiretroviral agents in the treatment of HIV-1 infection.

Class (Stereo):
CHEMICAL (ACHIRAL)


Choline C 11 injection was approved to help diagnose recurrent prostate cancer. It is used for a procedure called positron emission tomography (PET) scan to detect tumors that are not detectable by other scanning procedures, such as bone scan, computed tomography (CT), or magnetic resonance imaging (MRI). Choline C 11 is a radioactive diagnostic agent, the analog of choline. Choline is involved in the synthesis of the structural components of cell membranes, as well as modulation of transmembrane signaling. Increased phospholipid synthesis (i.e., increased uptake of choline) has been associated with cell proliferation and the transformation process that occurs in tumor cells. Recently, Choline C 11 PET was studied for diagnosis the patients with hepatocellular carcinoma; although the phase II of clinical trials was not begun.
Cabozantinib (development code name XL184; marketed under the trade name Cometriq) is an orally bioavailable, small molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Cabozantinib strongly binds to and inhibits several RTKs, which are often overexpressed in a variety of cancer cell types, including hepatocyte growth factor receptor (MET), RET (rearranged during transfection), vascular endothelial growth factor receptor types 1 (VEGFR-1), 2 (VEGFR-2), and 3 (VEGFR-3), mast/stem cell growth factor (KIT), FMS-like tyrosine kinase 3 (FLT-3), TIE-2 (TEK tyrosine kinase, endothelial), tropomyosin-related kinase B (TRKB) and AXL. This may result in an inhibition of both tumor growth and angiogenesis, and eventually lead to tumor regression. Cabozantinib was granted orphan drug status by the U.S. Food and Drug Administration (FDA) in January 2011. It is currently undergoing clinical trials for the treatment of prostate, bladder, ovarian, brain, melanoma, breast, non-small cell lung, pancreatic, hepatocellular and kidney cancers.
Ponatinib (trade name Iclusig, previously AP24534) is developed by ARIAD Pharmaceuticals for the treatment of chronic myeloid leukemia (CML) and Philadelphia chromosome–positive (Ph ) acute lymphoblastic leukemia (ALL). Ponatinib has been designed to be effective against these types of tumors. The United States Food and Drug Administration approved the drug as a candidate in 2012, but temporarily suspended sales on 31 October 2013 because of "the risk of life-threatening blood clots and severe narrowing of blood vessels". This suspension was partially lifted on Dec. 20, 2013 with ponatinib being issued revised prescribing information, a new "Black Box Warning" and a "Risk Evaluation and Mitigation Strategy" in place to better evaluate the risks and benefits of using the drug. Ponatinib is an orally bioavailable multitargeted receptor tyrosine kinase (RTK) inhibitor with potential antiangiogenic and antineoplastic activities. Ponatinib inhibits unmutated and all mutated forms of Bcr-Abl, including T315I, the highly drug therapy-resistant missense mutation of Bcr-Abl. This agent also inhibits other tyrosine kinases including those associated with vascular endothelial growth factor receptors (VEGFRs) and fibroblast growth factor receptors (FGFRs); in addition, it inhibits the tyrosine kinase receptor TIE2 and FMS-related tyrosine kinase receptor-3 (Flt3). RTK inhibition by ponatinib may result in the inhibition of cellular proliferation and angiogenesis and may induce cell death. Bcr-Abl is a fusion tyrosine kinase encoded by the Philadelphia chromosome.
Tofacitinib is an orally available inhibitor of Janus kinases (JAK), with immunomodulatory and anti-inflammatory activities. Upon administration, tofacitinib binds to JAK and prevents the activation of the JAK-signal transducers and activators of transcription (STAT) signaling pathway. This may decrease the production of pro-inflammatory cytokines, such as interleukin (IL)-6, -7, -15, -21, interferon-alpha and -beta, and may prevent both an inflammatory response and the inflammation-induced damage caused by certain immunological diseases. JAK kinases are intracellular enzymes involved in signaling pathways affecting hematopoiesis, immunity and inflammation. Tofacitinib was discovered and developed by the National Institutes of Health and Pfizer. Besides rheumatoid arthritis, tofacitinib has also been studied in clinical trials for the prevention of organ transplant rejection, and the treatment of psoriasis and ulcerative colitis. Patients treated with tofacitinib (XELJANZ) are at increased risk for developing serious infections that may lead to hospitalization or death and adverse reactions. Most patients who developed these infections were taking concomitant immunosuppressants such as methotrexate or corticosteroids.
Regorafenib (trade name Stivarga) is an orally bioavailable small molecule with potential antiangiogenic and antineoplastic activities. Regorafenib binds to and inhibits vascular endothelial growth factor receptors (VEGFRs) 2 and 3, and Ret, Kit, PDGFR and Raf kinases, which may result in the inhibition of tumor angiogenesis and tumor cell proliferation. VEGFRs are receptor tyrosine kinases that play important roles in tumor angiogenesis; the receptor tyrosine kinases RET, KIT, and PDGFR, and the serine/threonine-specific Raf kinase are involved in tumor cell signaling. In in vivo models, regorafenib demonstrated anti-angiogenic activity in a rat tumor model, and inhibition of tumor growth as well as anti-metastatic activity in several mouse xenograft models including some for human colorectal carcinoma. Since 2009 it was studied as a potential treatment option in multiple tumor types. Stivarga is approved by FDA to treat two different tumor types: metastatic colorectal cancer in patients who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if KRAS wild type, an anti-EGFR therapy (approved in 2012) and to treat patients with locally advanced, unresectable or metastatic gastrointestinal stromal tumor who have been previously treated with imatinib mesylate and sunitinib malate (approved in 2013).
Bosutinib (trade name Bosulif) originally synthesized by Wyeth, it is being developed by Pfizer. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy. Bosutinib is a synthetic quinolone derivative and dual kinase inhibitor that targets both Abl and Src kinases with potential antineoplastic activity. Unlike imatinib, bosutinib inhibits the autophosphorylation of both Abl and Src kinases, resulting in inhibition of cell growth and apoptosis. Because of the dual mechanism of action, this agent may have activity in resistant CML disease, other myeloid malignancies and solid tumors. Abl kinase is upregulated in the presence of the abnormal Bcr-abl fusion protein which is commonly associated with chronic myeloid leukemia (CML). Overexpression of specific Src kinases is also associated with the imatinib-resistant CML phenotype.