{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for ergocalciferol in Note (approximate match)
Showing 1 - 4 of 4 results
Status:
US Approved Rx
(2000)
Source:
NDA021027
(2000)
Source URL:
First approved in 1999
Source:
NDA020862
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Doxercalciferol is a synthetic vitamin D2 analog that undergoes metabolic activation in vivo to form 1α,25-dihydroxyvitamin D2 (1α,25-(OH)2D2), a naturally occurring, biologically active form of vitamin D2. Doxercalciferol is indicated for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on dialysis, as well as for the treatment of secondary hyperparathyroidism in patients with Stage 3 or Stage 4 chronic kidney disease. Doxercalciferol is marketed under the brand name Hectorol by Genzyme Corporation, and is manufactured by Catalent Pharma Solutions, Inc.
Status:
US Approved Rx
(1985)
Source:
NDA018708
(1985)
Source URL:
First approved in 1985
Source:
NDA018708
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Quazepam is indicated for the treatment of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Quazepam interact preferentially with the benzodiazepine-1 (BZ1) receptors. Most common adverse reactions (>1%): drowsiness, headache, fatigue, dizziness, dry mouth, dyspepsia. Downward of CAN depressant dose adjustment may be necessary due to additive effects.
Status:
US Approved Rx
(2000)
Source:
NDA021163
(2000)
Source URL:
First marketed in 1921
Class:
MIXTURE
Targets:
Conditions:
Cholecalciferol (/ˌkoʊləkælˈsɪfərɒl/) (vitamin D3) is one of the five forms of vitamin D. Cholecalciferol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestation of vitamin D deficiency is rickets, which is seen in children and results in bony deformities including bowed long bones. Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet (UV) B radiation with a wavelength of 290–320 nanometers penetrates uncovered skin and converts cutaneous 7-dehydrocholesterol to previtamin D3, which in turn becomes vitamin D3. In supplements and fortified foods, vitamin D is available in two forms, D2 (ergocalciferol) and D3 (cholecalciferol) that differ chemically only in their side-chain structure. Vitamin D2 is manufactured by the UV irradiation of ergosterol in yeast, and vitamin D3 is manufactured by the irradiation of 7-dehydrocholesterol from lanolin and the chemical conversion of cholesterol. The two forms have traditionally been regarded as equivalent based on their ability to cure rickets and, indeed, most steps involved in the metabolism and actions of vitamin D2 and vitamin D3 are identical. Both forms (as well as vitamin D in foods and from cutaneous synthesis) effectively raise serum 25(OH) D levels. Firm conclusions about any different effects of these two forms of vitamin D cannot be drawn. However, it appears that at nutritional doses, vitamins D2 and D3 are equivalent, but at high doses, vitamin D2 is less potent. The American Academy of Pediatrics (AAP) recommends that exclusively and partially breastfed infants receive supplements of 400 IU/day of vitamin D shortly after birth and continue to receive these supplements until they are weaned and consume ≥1,000 mL/day of vitamin D-fortified formula or whole milk. Cholecalciferol is used in diet supplementary to treat Vitamin D Deficiency. Cholecalciferol is inactive: it is converted to its active form by two hydroxylations: the first in the liver, the second in the kidney, to form calcitriol, whose action is mediated by the vitamin D receptor, a nuclear receptor which regulates the synthesis of hundreds of enzymes and is present in virtually every cell in the body. Calcitriol increases the serum calcium concentrations by increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein.