{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2023)
Source:
ANDA206983
(2023)
Source URL:
First approved in 1984
Source:
NDA019264
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pentamidine (formulated as a salt, pentamidine diisethionate or dimesilate) is an antimicrobial medication given for prevention and treatment of pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii (formerly known as Pneumocystis carinii), a severe interstitial type of pneumonia often seen in patients with HIV infection. The drug is also the mainstay of treatment for stage I infection with Trypanosoma bruceigambiense (West African trypanosomiasis). Pentamidine is also used as a prophylactic against PCP in patients receiving chemotherapy and in some patients who have undergone organ transplantation, as they also have a depressed immune system as a direct side-effect of the drugs used. The mortality of untreated PCP is very high. Additionally, pentamidine has good clinical activity in treating leishmaniasis, and yeast infections caused by the organism Candida albicans. Pentamidine is also used as a prophylactic antibiotic for children undergoing treatment for leukemia. Studies suggest that the pentamidine isethionate interferes with microbial nuclear metabolism by inhibition of DNA, RNA, phospholipid and protein synthesis. However, the mode of action is not fully understood.
Status:
US Approved Rx
(2023)
Source:
ANDA206983
(2023)
Source URL:
First approved in 1984
Source:
NDA019264
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pentamidine (formulated as a salt, pentamidine diisethionate or dimesilate) is an antimicrobial medication given for prevention and treatment of pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii (formerly known as Pneumocystis carinii), a severe interstitial type of pneumonia often seen in patients with HIV infection. The drug is also the mainstay of treatment for stage I infection with Trypanosoma bruceigambiense (West African trypanosomiasis). Pentamidine is also used as a prophylactic against PCP in patients receiving chemotherapy and in some patients who have undergone organ transplantation, as they also have a depressed immune system as a direct side-effect of the drugs used. The mortality of untreated PCP is very high. Additionally, pentamidine has good clinical activity in treating leishmaniasis, and yeast infections caused by the organism Candida albicans. Pentamidine is also used as a prophylactic antibiotic for children undergoing treatment for leukemia. Studies suggest that the pentamidine isethionate interferes with microbial nuclear metabolism by inhibition of DNA, RNA, phospholipid and protein synthesis. However, the mode of action is not fully understood.
Status:
US Approved Rx
(2025)
Source:
ANDA218746
(2025)
Source URL:
First approved in 1983
Source:
BUMEX by VALIDUS PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Bumetanide is indicated for the treatment of edema associated with congestive heart failure, hepatic and renal disease, including the nephrotic syndrome. It blocks the reabsorption of sodium and fluid from the kidney's tubules. The most frequent clinical adverse reactions considered probably or possibly related to bumetanide are muscle cramps (seen in 1.1% of treated patients), dizziness (1.1%), hypotension (0.8%), headache (0.6%), nausea (0.6%) and encephalopathy (in patients with preexisting liver disease) (0.6%). One or more of these adverse reactions have been reported in approximately 4.1% of patients treated with Bumex (bumetanide). Lithium should generally not be given with diuretics (such as Bumex (bumetanide)) because they reduce its renal clearance and add a high risk of lithium toxicity. Bumex (bumetanide) may potentiate the effect of various antihypertensive drugs, necessitating a reduction in the dosage of these drugs.
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(2000)
Source:
ANDA075294
(2000)
Source URL:
First approved in 1983
Source:
ZANTAC 150 by GLAXO GRP LTD
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ranitidine, a histamine H2-receptor antagonist, is now well established as a potent inhibitor of gastric acid secretion effective in the treatment and prophylaxis of gastrointestinal lesions aggravated by gastric acid secretion.
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(2000)
Source:
ANDA075294
(2000)
Source URL:
First approved in 1983
Source:
ZANTAC 150 by GLAXO GRP LTD
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ranitidine, a histamine H2-receptor antagonist, is now well established as a potent inhibitor of gastric acid secretion effective in the treatment and prophylaxis of gastrointestinal lesions aggravated by gastric acid secretion.
Status:
US Approved Rx
(1994)
Source:
ANDA074063
(1994)
Source URL:
First approved in 1982
Source:
VISKEN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Pindolol was developed at Sandoz at 1960s. Pindolol is a nonselective beta-adrenergic antagonist (beta-blocker) which possesses intrinsic sympathomimetic activity (partial agonist activity) in therapeutic dosage ranges but does not possess quinidine-like membrane stabilizing activity. The partial beta-adrenergic agonistic activity of pindolol in the heart appears to be completely restricted to the sinoatrial pacemaker. In standard pharmacologic tests in man and animals, Pindolol attenuates increases in heart rate, systolic blood pressure, and cardiac output resulting from exercise and isoproterenol administration, thus confirming its beta-blocking properties. In addition to beta-adrenergic activity pindolol demonstrates mixed agonist-antagonist activity at central 5-HT receptors. Although in accordance with the hypothesis that pindolol increases the antidepressant effects of selective serotonin reuptake inhibitors by antagonism of 5-HT at inhibitory 5-HT1A autoreceptors, pindolol possesses partial agonist activity at 5-HT1A receptors. Pindolol tablets are indicated in the management of hypertension.
Status:
US Approved Rx
(2014)
Source:
ANDA203126
(2014)
Source URL:
First approved in 1981
Source:
NDA018482
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nifedipine has been formulated as both a long- and short-acting 1,4-dihydropyridine calcium channel blocker. Nifedipine is sold under the brand names Adalat and Procardia among others. Nifedipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium inhibits the contractile processes of smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload. The vasodilatory effects of nifedipine result in an overall decrease in blood pressure. Nifedipine is used for the management of vasospastic angina, chronic stable angina, hypertension, and Raynaud's phenomenon. May be used as a first line agent for left ventricular hypertrophy and isolated systolic hypertension (long-acting agents).
Status:
US Approved Rx
(2016)
Source:
ANDA205390
(2016)
Source URL:
First approved in 1981
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Vecuronium is a neuromuscular blocking agent. Vecuronium operates by competing for the cholinoceptors at the motor end plate thereby exerting its muscle-relaxing properties which are used adjunctively to general anesthesia. Vecuronium is a bisquaternary nitrogen compound that acts by competitively binding to nicotinic cholinergic receptors. The binding of vecuronium decreases the opportunity for acetylcholine to bind to the nicotinic receptor at the postjunctional membrane of the myoneural junction. As a result, depolarization is prevented, calcium ions are not released and muscle contraction does not occur. Vecuronium is indicated as an adjunct to general anesthesia, to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation.