U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Xanomeline (LY-246,708) is an orthosteric muscarinic acetylcholine receptor (mAChR) agonist, often referred to as M1/M4-preferring. It is also known to act as a M5 receptor antagonist. Xanomeline was studied in clinical trials phase I in schizophrenia. In Phase II clinical trials in Alzheimer’s patients, xanomeline significantly improved several measures of cognitive function, yet produced unwanted side effects that limited patient compliance. The side effects seem to be associated with rapid metabolism of the alkyloxy side chain following oral administration, resulting in a nonselective, yet active compound with limited therapeutic utility. Despite a second Phase II clinical trial with a patch formulation, the liabilities of xanomeline still outweigh its benefits.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ritlecitinib is an orally administered, covalent small-molecule selective dual inhibitor of JAK3 and the TEC kinase family. In vitro studies showed ritlecitinib covalently binds to JAK3 and is more than 10 000 times more potent against JAK3 than against JAK1, JAK2, and tyrosine kinase. Ritlecitinib also inhibits the five members of the TEC kinase family. Ritlecitinib irreversibly inhibits Janus kinase 3 (JAK3) and TEC kinase family by blocking the adenosine triphosphate (ATP) binding site. In cellular settings, ritlecitinib inhibits cytokine induced STAT phosphorylation mediated by JAK3-dependent receptors. Additionally, ritlecitinib inhibits signaling of immune receptors dependent on TEC kinase family members.The FDA has approved ritlecitinib (LITFULO; Pfizer Inc), a once daily oral treatment, for individuals aged 12 years and older with severe alopecia areata. This makes ritlecitinib, in the 50 mg dosage, the first and only treatment approved by the FDA for adolescents with severe alopecia areata. The approval was based on the results of the ALLEGRO phase 2b/3 trial (NCT03732807), which included 718 individuals who had 50% or more scalp hair loss measured by the Severity of Alopecia Tool. Investigators of the study evaluated the safety and efficacy of ritlecitinib at 118 different sites in 18 different countries. Regulatory applications for LITFULO in alopecia areata have been submitted to countries around the world for review, including China, the European Union, Japan, and the United Kingdom. The European Medicines Agency (EMA) has accepted the Marketing Authorization Application (MAA) for ritlecitinib with a decision anticipated in the third quarter of 2023. LITFULO is also being evaluated for vitiligo, Crohn’s disease, and ulcerative colitis.
Momelotinib (CYT387) is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases. Momelotinib is developing by Gilead Sciences for the oral treatment of pancreatic and non-small cell lung cancers, and myeloproliferative disorders (including myelofibrosis, essential thrombocythaemia and polycythaemia vera).
Fruquintinib is a highly selective small molecule drug candidate that has been shown to inhibit VEGFR 24 hours a day via an oral dose, with lower off-target toxicities compared to other targeted therapies. Mechanistically, Fruquintinib selectively blocks VEGF-mediated receptor autophosphorylation, thus inhibiting endothelial cell proliferation and migration. In preclinical in vitro studies using a 32P-ATP assay, Fruquintinib selectively inhibited the tyrosine kinase activity associated with VEGFR-1, VEGFR-2, and VEGFR-3 at concentrations in the nanomolar range, but showed little inhibition against a panel of 254 kinases related to cell cycle or cell proliferation, including cyclin-dependent kinase (CDK1, 2, 5), the epidermal growth factor receptor (EGFR), the mesenchymal-epithelial transition factor (c-Met), and platelet-derived growth factor receptor β (PDGFRβ) kinase. In cellular assays, Fruquintinib potently inhibited VEGF-stimulated VEGFR phosphorylation and proliferation in human umbilical vein endothelial cells. Fruquintinib demonstrated potent antiangiogenic effect and anti-tumor activity in xenograft models of colon adenocarcinoma (HT-29), non-small cell lung cancer (NSCLC; NCI-H460), renal clear cell carcinoma (Caki-1), and gastric carcinoma (BGC823) in mice treated for 3 weeks. Fruquintinib is currently under joint development in China by Chi-Med and its partner Eli Lilly and Company (“Lilly”). Chi-Med and Lilly jointly announced top-line results from the FRESCO CRC trial on March 3, 2017. In addition, Fruquintinib is being studied in China in Phase III pivotal trial in non-small cell lung cancer (“NSCLC”), known as FALUCA; and a Phase II study using Fruquintinib combined with Iressa® (gefitinib) in the first-line setting for patients with advanced or metastatic NSCLC.
Leniolisib (JOENJA®) is an oral selective phosphoinositide 3-kinase-delta (PI3Kdelta) inhibitor being developed by Pharming Group NV in-licensed from Novartis for the treatment of immunodeficiency disorders. Leniolisib inhibits PI3K-delta by blocking the active binding site of PI3K-delta. In cell-free isolated enzyme assays, leniolisib was selective for PI3K-delta over PI3K-alpha (28-fold), PI3K-beta (43-fold), and PI3K-gamma (257-fold), as well as the broader kinome. In cell-based assays, leniolisib reduced pAKT pathway activity and inhibited proliferation and activation of B and T cell subsets. Gain-of-function variants in the gene encoding the p110-delta catalytic subunit or loss of function variants in the gene encoding the p85-alpha regulatory subunit each cause hyperactivity of PI3K-delta. Leniolisib inhibits the signalling pathways that lead to increased production of PIP3, hyperactivity of the downstream mTOR/AKT pathway, and to the dysregulation of B and T cells. In March 2023, leniolisib received its first approval for the treatment of activated PI3Kdelta syndrome (APDS) in adult and paediatric patients 12 years of age and older. Leniolisib is also under regulatory review in European Union for the treatment of APDS. Development of leniolisib for the treatment of Sjögren's syndrome has been discontinued.
Adagrasib (KRAZATI™) is an orally available, potent, small molecule inhibitor of KRAS G12C mutant isoform being developed by Mirati Therapeutics for the treatment of solid tumours harbouring KRAS G12C oncogenic driver mutation, including non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). Adagrasib is an irreversible inhibitor of KRAS G12C that covalently binds to the mutant cysteine in KRAS G12C and locks the mutant KRAS protein in its inactive state that prevents downstream signaling without affecting wild-type KRAS protein. Adagrasib inhibits tumor cell growth and viability in cells harboring KRAS G12C mutations and results in tumor regression in KRAS G12C-mutated tumor xenograft models with minimal off-target activity. In December 2022, adagrasib received its first approval in the USA for the treatment of adults with KRAS G12C-mutated locally advanced or metastatic NSCLC (as determined by an FDA approved test) who have received ≥ 1 prior systemic therapy. It was approved under accelerated approval based on objective response rate and duration of response, and its continued approval for this indication may be contingent upon verification and description of a clinical benefit in a confirmatory trial(s). The drug is under regulatory review for NSCLC in the European Union and is in development for CRC in the US. Clinical studies of adagrasib in solid tumours, including CRC, are underway in several countries.
Lenacapavir (Sunlenca®) is a long-acting capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) being developed by Gilead Sciences Inc. Lenacapavir is a multistage, selective inhibitor of HIV-1 capsid function that directly binds to the interface between capsid protein (p24) subunits in hexamers. Surface plasmon resonance sensorgrams showed dose-dependent and saturable binding of lenacapavir to cross-linked wild-type capsid hexamer with an equilibrium binding constant (KD) of 1.4 nM. Lenacapavir inhibits HIV-1 replication by interfering with multiple essential steps of the viral lifecycle, including capsid-mediated nuclear uptake of HIV-1 proviral DNA (by blocking nuclear import proteins binding to capsid), virus assembly and release (by interfering with Gag/Gag-Pol functioning, reducing production of capsid protein subunits), and capsid core formation (by disrupting the rate of capsid subunit association, leading to malformed capsids). It is available as an oral tablet and injectable solution, with the latter being a slow-release formulation to allow bi-annual subcutaneous administration. In August 2022, lenacapavir received its first approval in the EU for use in combination with other antiretroviral(s) in adults with multi-drug resistant HIV infection, for whom it is otherwise not possible to construct a suppressive anti-viral regimen. On December 22, 2022 the US Food and Drug Administration granted approval for Gilead Sciences’ Sunlenca (lenacapavir) plus other antiretroviral(s) to treat human immunodeficiency virus type 1 infection.
Olutasidenib (FT-2102) is a highly potent, orally bioavailable, brain-penetrant, and selective inhibitor of mutant IDH1. Olutasidenib was designed to reduce R-2-HG and revert pathologic epigenetic modifications that impair cellular differentiation to restore regulatory enzyme function. In patients with AML, susceptible IDH1 mutations are defined as those leading to increased levels of 2-hydroxyglutarate (2-HG) in the leukemia cells and where efficacy is predicted by 1) clinically meaningful remissions with the recommended dose of olutasidenib and/or 2) inhibition of mutant IDH1 enzymatic activity at concentrations of olutasidenib sustainable at the recommended dosage according to validated methods. The most common of such mutations in patients with AML are R132H and R132C substitutions. In vitro, olutasidenib inhibited mutated IDH1 R132H, R132L, R132S, R132G, and R132C proteins; wild-type IDH1 or mutated IDH2 proteins were not inhibited. Olutasidenib inhibition of mutant IDH1 led to decreased 2-HG levels in vitro and in in vivo xenograft models. On December 1, 2022, the FDA approved olutasidenib (brand name Rezlidhia) capsules for adult patients with relapsed or refractory acute myeloid leukemia with a susceptible IDH1 mutation as detected by an FDA-approved test.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Daridorexant (Quviviq™; Idorsia Pharmaceuticals Ltd.) is an orally administered dual orexin type 1 and type 2 (OX1 and OX2) receptor antagonist (DORA) being developed for the treatment of insomnia. It was selected from a pool of drug candidates on the basis of an expected effect duration of ≈ 8 h at a dose of 25 mg, with a half-life intended to minimize residual effects that might impair daytime functioning. Based on the results of two pivotal phase III trials, daridorexant was recently approved in the USA for the treatment of adult patients with insomnia characterized by difficulties with sleep onset and/or sleep maintenance. The mechanism of action of daridorexant in the treatment of insomnia is presumed to be through antagonism of orexin receptors. The orexin neuropeptide signaling system plays a role in wakefulness. Blocking the binding of wake-promoting neuropeptides orexin A and orexin B to receptors OX1R and OX2R is thought to suppress wake drive.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bexagliflozin, sold under the brand name Brenzavvy, is a potent and selective SGLT2 inhibitor. By inhibiting SGLT2, bexagliflozin reduces renal reabsorption of filtered glucose and lowers the renal threshold for glucose, and thereby increases urinary glucose excretion. Brenzavvy is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes. The FDA approval on January 23, 2023 is based on results from a clinical program that evaluated the safety and efficacy of Brenzavvy in 23 clinical trials enrolling more than 5,000 adults with type 2 diabetes mellitus.