{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
SPARINE by WYETH AYERST
(1957)
Source URL:
First approved in 1956
Source:
SPARINE by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Promazine (Sparine) is a phenothiazine neuroleptic used for short-term management of moderate to severe psychomotor agitation and treatment of agitation and restlessness in the elderly. Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazine's antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tuberoinfundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. Promazine is not approved for human use in the United States. It is available in the US for veterinary use under the names Promazine and Tranquazine.
Status:
US Previously Marketed
Source:
HETRAZAN by LEDERLE
(1950)
Source URL:
First approved in 1950
Source:
HETRAZAN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
US Previously Marketed
Source:
CAMOQUIN HYDROCHLORIDE by PARKE DAVIS
(1950)
Source URL:
First approved in 1950
Source:
CAMOQUIN HYDROCHLORIDE by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Status:
US Previously Marketed
Source:
Aptrol by Smith Kline & French
(1949)
Source URL:
First approved in 1949
Source:
Aptrol by Smith Kline & French
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
US Previously Marketed
Source:
TRIQUIN QUINACRINE HYDROCHLORIDE by WINTHROP
(1961)
Source URL:
First approved in 1938
Class (Stereo):
CHEMICAL (RACEMIC)
Quinacrine was initially developed as an anti-malarial drug marketed under the name Atabrine. Also it was approved for the teratment of ascites, however it was wothdrawn for both indication in 1995 and 2003, respectively. The drug is also used for the treatment of giardiasis, lupus, rheumatoid arthritis, refractory pulmonary effusion and pneumothorax, induce female sterilization etc. Proposed mechanisms of action include DNA intercalation interference with RNA transcription and translation, inhibition of succinate oxidation interference with electron transport, inhibition of cholinesterase, and inhibitor of phospholipase.
Status:
US Previously Marketed
First marketed in 1921
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Mephobarbital us a barbiturate derivative used primary as an anticonvulsant, but also as a sedative and anxiolytic. Marketing of mephobarbital was discontinued in 2012.
Status:
US Previously Marketed
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Melatonin (5-methoxy N-acetyltryptamine) is a hormone synthesized and released from the pineal gland at night, which acts on specific high affinity G-protein coupled receptors to regulate various aspects of physiology and behaviour, including circadian and seasonal responses, and some retinal, cardiovascular and immunological functions. Melatonin is also made synthetically and available without a prescription as an over-the-counter (OTC) dietary supplement in the U.S. Melatonin supplementation has many uses, however, it has been widely studied for treatment of jet lag and sleep disorders. Parents may consider using melatonin to help their child who has a trouble falling asleep. A medical professional should always evaluate insomnia or other sleeping disorders in children. Additionally, melatonin has been shown to protect against oxidative stress in various, highly divergent experimental systems. There are many reasons for its remarkable protective potential. In mammals, melatonin binds to a number of receptor subtypes including high-affinity (MT1 and MT2) and low-affinity (MT3, nuclear orphan receptors) binding sites, which are distributed throughout the central nervous system and periphery.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1961)
Source URL:
First marketed in 1897
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
First marketed in 1885
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Antipyrine is an analgesic and antipyretic that has been given by mouth and as ear drops. It is often used in testing the effects of other drugs or diseases on drug-metabolizing enzymes in the liver. It inhibits cyclooxygenases and shows little anti-inflammatory activity. Like many old and approved substances after almost 100 years of use, antipyrine has been associated with some serious side effects, namely agranulocytosis and shock reactions.
Status:
US Previously Marketed
First marketed in 1847
Class (Stereo):
CHEMICAL (ACHIRAL)
Chloroform is a colorless, sweet-smelling, dense liquid and widely used industrial and laboratory solvent. The total global flux of chloroform through the environment is approximately 660 000 tonnes per year, and about 90% of emissions are natural in origin. Many kinds of seaweed produce chloroform, and fungi are believed to produce chloroform in soil. Chloroform is used as an industrial solvent and as an intermediate in the manufacture of polymeric materials. The major use of chloroformtoday is in the production of the refrigerant R-22, commonly used in the air conditioning business. Inhaled chloroform anesthesia was introduced in 1847 and Chloroform subsequently became the most widely used volatile anaesthetic, and was used in horses before the end of the 19th century. Pure chloroform is known to be decomposed by the air with the formation of hydrochloric acid, phosgene and carbon dioxide. Phosgene is also generated metabolically from chloroform, and liver and kidney damage can ensue from its production.