{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2014)
Source:
NDA204684
(2014)
Source URL:
First approved in 2014
Source:
NDA204684
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Miltefosine is an anti-leishmanial agent. It is an alkyl phospholipids compound, was originally intended for breast cancer and other solid tumors. However, it could not be developed as an oral agent because of dose-limiting gastro-intestinal toxicity, and only a topical formulation is approved for skin metastasis. But Miltefosine showed excellent antileishmanial activity both in vitro and in experimental models. Miltefosine is effective in vitro against both promastigotes and amastigotes of various species of Leishmania and also other kinetoplastidae (Trypanosoma cruzi,T. brucei) and other protozoan parasites (Entamoeba histolytica, Acanthamoeba). Mechanism of action is unknown. It is likely to involve interaction with lipids (phospholipids and sterols), including membrane lipids, inhibition of cytochrome c oxidase (mitochondrial function), and apoptosis-like cell death. Miltefosine is approved for the treatment of Visceral leishmaniasis (due to Leishmania donovani), Cutaneous leishmaniasis (due to Leishmania braziliensis, Leishmania guyanensis, and Leishmania panamensis) and Mucosal leishmaniasis (due to Leishmania braziliensis).
Status:
US Approved Rx
(2014)
Source:
NDA205436
(2014)
Source URL:
First approved in 2014
Source:
NDA205436
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Tedizolid phosphate is an oxazolidinone prodrug which in the body is dephosphorylated to the active compound tedizolid. The antibacterial activity of tedizolid is mediated by binding to the 50S subunit of the bacterial ribosome resulting in inhibition of protein synthesis. Tedizolid inhibits bacterial protein synthesis through a mechanism of action different from that of other non-oxazolidinone class antibacterial drugs; therefore, cross-resistance between tedizolid and other classes of antibacterial drugs is unlikely. Tedizolid is bacteriostatic against Gram Positive bacteria such as enterococci, staphylococci, and streptococci. No drug-drug interactions were identified with tedizolid.
Status:
US Approved Rx
(2014)
Source:
NDA205718
(2014)
Source URL:
First approved in 2014
Source:
NDA205718
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Fosnetupitant is a prodrug form of netupitant. Netupitant is a selective antagonist of human substance P/neurokinin 1 (NK-1) receptors. Upon intravenous administration, fosnetupitant is converted by phosphatases to its active form. It competitively binds to and blocks the activity of NK-1 receptors in the central nervous system, by inhibiting binding of substance P (SP) to NK-1 receptors. This prevents delayed emesis, which is associated with SP secretion. AKYNZEO® is a combination of palonosetron, a serotonin-3 receptor antagonist, and netupitant (capsules for oral use) or fosnetupitant (injections for intravenous use). AKYNZEO® for injection is indicated in combination with dexamethasone in adults for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy.
Status:
US Approved Rx
(2022)
Source:
ANDA212731
(2022)
Source URL:
First approved in 2014
Source:
NDA022535
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pirfenidone is a synthetic antifibrotic agent indicated for the treatment of idiopathic pulmonary fibrosis as Esbriet. Pirfenidone inhibits fibroblast, epidermal, platelet-derived, and transforming beta-1 growth factors. It also inhibits DNA synthesis and the production of mRNA for collagen types I and III, resulting in a reduction in radiation-induced fibrosis. Pirfenidone has demonstrated activity in multiple fibrotic conditions however the exact mechanism of action of pirfenidone in the treatment of IPF has not been established.
Status:
US Approved Rx
(2022)
Source:
ANDA211607
(2022)
Source URL:
First approved in 2014
Source:
NDA205677
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tasimelteon, developed by Vanda Pharmaceuticals Inc under license from Bristol-Myers Squibb Co, is a melatonin receptor agonist. Tasimelteon differs structurally from melatonin and drugs with known melatonin agonist activity, in particular by its distinct aromatic group and linker. Tasimelteon bears also no structural relationship to any other approved active substance. Tasimelteon is presumably acts through activation of MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. Tasimelteon is approved for the treatment of Non24-Hour Sleep-Wake Disorder.
Status:
US Approved Rx
(2024)
Source:
ANDA211788
(2024)
Source URL:
First approved in 2014
Source:
NDA205437
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Apremilast (brand name Otezla) selective inhibitor of phosphodiesterase 4 is used for the treatment of patients with moderate to severe plaque psoriasis. OTEZLA is the first and only PDE4 inhibitor approved for the treatment of plaque psoriasis, a chronic inflammatory disease of the skin resulting from an uncontrolled immune response. Apremilast also inhibits spontaneous production of TNF-alpha from human rheumatoid synovial cells. It has anti-inflammatory activity. By inhibiting PDE-4, apremilast increases intracellular levels of cAMP and thereby inhibits the production of multiple proinflammatory mediators including PDE-4, TNF-alpha, interleukin-2 (IL-2), interferon-gamma, leukotrienes, and nitric oxide synthase.
Status:
US Approved Rx
(2017)
Source:
NDA209482
(2017)
Source URL:
First approved in 2013
Source:
NDA204275
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Vilanterol (INN, USAN) is an ultra-long-acting β2 adrenoreceptor agonist (ultra-LABA), which was approved in May 2013 in combination with fluticasone furoate for sale as Breo Ellipta by GlaxoSmithKline for the treatment of chronic obstructive pulmonary disease (COPD). Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3’,5’-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs. Vilanterol is available in following combinations: a) with inhaled corticosteroid fluticasone furoate — fluticasone furoate/vilanterol (trade names Breo Ellipta , Relvar Ellipta; b) with muscarinic antagonist umeclidinium bromide — umeclidinium bromide/vilanterol (trade name Anoro Ellipta).
Status:
US Approved Rx
(2023)
Source:
NDA217513
(2023)
Source URL:
First approved in 2013
Source:
NDA204114
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Trametinib is a reversible and specific inhibitor of mitogen-activated protein kinase kinases MEK1 and MEK2 which are involved in a RAS/RAF/MEK/ERK signaling pathway and control cell growth, survival, and differentiation. By inhibiting MEK1 and MEK2 trametinib blocks dual phosphorylation of ERK1/2 and stops cell cycling. In addition, trametinib blocks BRAF pathway in the cells with BRAF V600E mutations. Trametinib (as a single agent and in combination with dabrafenib) is approved for the treatment of unresectable or metastatic melanoma with BRAF V600E or V600K mutations.
Status:
US Approved Rx
(2022)
Source:
NDA217003
(2022)
Source URL:
First approved in 2013
Source:
NDA205552
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ibrutinib is an orally bioavailable Bruton's tyrosine kinase (BTK) inhibitor indicated for the treatment of mantle cell lymphoma (MCL) patients that previously received at least one therapy. The drug was jointly developed by Janssen Biotech and Pharmacyclics. Ibrutinib selectively binds to Cys-481 residue in the allosteric inhibitory segment of BTK (TK/SH1 domain), and irreversibly blocks its enzymatic activity thus preventing B-cell activation and signaling, totally blocking the B-cell receptor and cytokine receptor pathways. This leads to an inhibition of the growth of malignant B cells that overexpress BTK. Apart from mantle cell lymphoma Ibrutinib is approved for the treatment of chronic lymphocytic leukemia and Waldenstrom Macroglobulinemia.
Status:
US Approved Rx
(2017)
Source:
NDA209482
(2017)
Source URL:
First approved in 2013
Source:
NDA203975
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Umeclidinium (used as a bromide salt) is a long-acting, antimuscarinic antagonist, often referred to as an anticholinergic, developed for the treatment of chronic obstructive pulmonary disease (COPD) (alone and in combination with Vilanterol - long-acting beta2-adrenergic agonist). Umeclidinium has similar affinity to the subtypes of muscarinic receptors M1 to M5 with Ki values of 0.16 nM, 0.15 nM, 0.06 nM, 0.05 nM and 0.13 nM for M1, M2, M3, M4 and M5, respectively. Umeclidinium is selective against mAChR over other unrelated receptors or channels such as κ and σ opiod receptors, Na+ channel and dopamine transporter. In the airways, it exhibits pharmacological effects through the inhibition of M3 receptor at the smooth muscle leading to bronchodilation. There is potential for an additive interaction with concomitantly used anticholinergic medicines.