U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 231 - 240 of 1197 results

Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Fentanyl is a potent agonist of mu opioid receptor. It is used to relieve severe pain, such as after surgery or during cancer treatment, and breakthrough pain (flare-ups of intense pain despite round-the-clock narcotic treatment). Fentanyl is an extremely powerful analgesic, 50–100-times more potent than morphine. Fentanyl harbors massive risk for addiction and abuse regardless of its prescription form. Fentanyl abuse is especially dangerous to those without a tolerance to opioids. The substance’s already elevated risk of overdose is multiplied when someone without a tolerance abuses it.
Levonorgestrel (LNG) is a synthetic progestational hormone with actions similar to those of progesterone and about twice as potent as its racemic or (+-)-isomer (norgestrel). It is used for contraception, control of menstrual disorders, and treatment of endometriosis. It is usually supplied in a racemic mixture (Norgestrel, 6533-00-2). Only the levonorgestrel isomer is active. Within an Intrauterine device (IUD), sold as Mirena among others, it is effective for long term prevention of pregnancy. The local mechanism by which continuously released LNG enhances contraceptive effectiveness of Mirena has not been conclusively demonstrated. Studies of Mirena and similar LNG IUS prototypes have suggested several mechanisms that prevent pregnancy: thickening of cervical mucus preventing passage of sperm into the uterus, inhibition of sperm capacitation or survival, and alteration of the endometrium. Mirena has mainly local progestogenic effects in the uterine cavity. The high local levels of levonorgestrel lead to morphological changes including stromal pseudodecidualization, glandular atrophy, a leukocytic infiltration and a decrease in glandular and stromal mitoses. Ovulation is inhibited in some women using Mirena. In a 1-year study, approximately 45% of menstrual cycles were ovulatory, and in another study after 4 years, 75% of cycles were ovulatory. There has been much debate regarding levonorgestrel emergency contraception's (LNG-EC's) method of action since 1999 when the Food and Drug Administration first approved its use. Proponents of LNG-EC have argued that they have moral certitude that LNG-EC works via a non-abortifacient mechanism of action, and claim that all the major scientific and medical data consistently support this hypothesis. However, newer medical data serve to undermine the consistency of the non-abortifacient hypothesis and instead support the hypothesis that preovulatory administration of LNG-EC has significant potential to work via abortion. The implications of the newer data have important ramifications for medical personnel, patients, and both Catholic and non-Catholic emergency room protocols. In the future, technology such as the use of early pregnancy factor may have the potential to quantify how frequently preovulatory LNG-EC works via abortion. The latest scientific and medical evidence now demonstrates that levonorgestrel emergency contraception theoretically works via abortion quite often. The implications of the newer data have important ramifications for medical personnel, patients, and both Catholic and non-Catholic emergency room rape protocols.
Haloperidol is a phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and Tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of Huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. Haloperidol also exerts sedative and antiemetic activity. Haloperidol principal pharmacological effects are similar to those of piperazine-derivative phenothiazines. The drug has action at all levels of the central nervous system-primarily at subcortical levels-as well as on multiple organ systems. Haloperidol has strong antiadrenergic and weaker peripheral anticholinergic activity; ganglionic blocking action is relatively slight. It also possesses slight antihistaminic and antiserotonin activity. The precise mechanism whereby the therapeutic effects of haloperidol are produced is not known, but the drug appears to depress the CNS at the subcortical level of the brain, midbrain, and brain stem reticular formation. Haloperidol seems to inhibit the ascending reticular activating system of the brain stem (possibly through the caudate nucleus), thereby interrupting the impulse between the diencephalon and the cortex. The drug may antagonize the actions of glutamic acid within the extrapyramidal system, and inhibitions of catecholamine receptors may also contribute to haloperidol's mechanism of action. Haloperidol may also inhibit the reuptake of various neurotransmitters in the midbrain, and appears to have a strong central antidopaminergic and weak central anticholinergic activity. The drug produces catalepsy and inhibits spontaneous motor activity and conditioned avoidance behaviours in animals. The exact mechanism of antiemetic action of haloperidol has also not been fully determined, but the drug has been shown to directly affect the chemoreceptor trigger zone (CTZ) through the blocking of dopamine receptors in the CTZ. Haloperidol is marketed under the trade name Haldol among others.
Status:
First approved in 1967
Source:
PROPRANOLOL HYDROCHLORIDE by BAXTER HLTHCARE CORP
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Propranolol is a nonselective, beta-adrenergic receptor-blocking agent possessing no other autonomic nervous system activity. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. Among the factors that may be involved in contributing to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable. In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity. Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain. The mechanism of the anti-migraine effect of propranolol has not been established. Propranolol is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Also is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris; for the prophylaxis of common migraine headache. In addition, is used to improve NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis. Due to the high penetration across the blood–brain barrier, propranolol causes sleep disturbances such as insomnia and vivid dreams, and nightmares. Dreaming (rapid eye movement sleep, REM) was reduced and increased awakening.
Status:
First approved in 1967

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Pentazocine is a synthetically prepared prototypical mixed agonist-antagonist narcotic (opioid analgesic) drug of the benzomorphan class of opioids used to treat moderate to moderately severe pain. Pentazocine is sold under several brand names, such as Fortral, Sosegon, Talwin NX. Pentazocine acts as an agonist of κ-opioid receptors and as an antagonist of μ-opioid receptors. This compound may exist as one of two enantiomers, named (+)-pentazocine and (−)-pentazocine. Side effects are similar to those of morphine, but pentazocine, due to its action at the kappa opioid receptor is more likely to invoke psychotomimetic effects. High dose may cause high blood pressure or high heart rate.
Thiothixene (trade mark Navane) belongs to a class of antipsychotics known as the first-generation antipsychotics, sometimes referred to as conventional or typical antipsychotics. Thiothixene is a thioxanthene antipsychotic which elicits antipsychotic activity by postsynaptic blockade of CNS dopamine receptors resulting in inhibition of dopamine-mediated effects; also has alpha-adrenergic blocking activity. Thiothixene is effective in the management of schizophrenia. Only cis isomer of thiothixene exerts clinical effectivity.
Amantadine hydrochloride has pharmacological actions as both an anti-Parkinson and an antiviral drug. The mechanism by which amantadine exerts its antiviral activity is not clearly understood. It appears to mainly prevent the release of infectious viral nucleic acid into the host cell by interfering with the function of the transmembrane domain of the viral M2 protein. In certain cases, amantadine is also known to prevent virus assembly during virus replication. It does not appear to interfere with the immunogenicity of inactivated influenza A virus vaccine. The mechanism of action of amantadine in the treatment of Parkinson's disease and drug-induced extrapyramidal reactions is not known. Data from earlier animal studies suggest that amantadine hydrochloride may have direct and indirect effects on dopamine neurons. More recent studies have demonstrated that amantadine is a weak, non-competitive NMDA receptor antagonist (K1 = 10µM). Although amantadine has not been shown to possess direct anticholinergic activity in animal studies, clinically, it exhibits anticholinergic-like side effects such as dry mouth, urinary retention, and constipation. Amantadine was approved by the FDA in 1966 as a prophylactic agent against Asian influenza, and eventually received approval for the treatment of influenza virus A in adults. In 1969, it was also discovered by accident to help reduce symptoms of Parkinson's disease, drug-induced extrapyramidal syndromes, and akathisia.
Indometacin (INN and BAN) or indomethacin (AAN, USAN, and former BAN) is a nonsteroidal anti-inflammatory drug (NSAID) commonly used as a prescription medication to reduce fever, pain, stiffness, and swelling from inflammation. Indomethacin has analgesic, anti-inflammatory, and antipyretic properties. The mechanism of action of Indometacin, like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2). Indomethacin is a potent inhibitor of prostaglandin synthesis in vitro. Indomethacin concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because indomethacin is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues. Indometacin is indicated for: Moderate to severe rheumatoid arthritis including acute flares of chronic disease, Moderate to severe ankylosing spondylitis, Moderate to severe osteoarthritis, Acute painful shoulder (bursitis and/or tendinitis), Acute gouty arthritis. In general, adverse effects seen with indomethacin are similar to all other NSAIDs. For instance, indometacin inhibits both cyclooxygenase-1 and cyclooxygenase-2, it inhibits the production of prostaglandins in the stomach and intestines, which maintain the mucous lining of the gastrointestinal tract. Indometacin, therefore, like other non-selective COX inhibitors can cause peptic ulcers. These ulcers can result in serious bleeding and/or perforation requiring hospitalization of the patient. To reduce the possibility of peptic ulcers, indomethacin should be prescribed at the lowest dosage needed to achieve a therapeutic effect, usually between 50–200 mg/day. It should always be taken with food. Nearly all patients benefit from an ulcer protective drug (e.g. highly dosed antacids, ranitidine 150 mg at bedtime, or omeprazole 20 mg at bedtime). Other common gastrointestinal complaints, including dyspepsia, heartburn and mild diarrhea are less serious and rarely require discontinuation of indomethacin.
Doxapram is an analeptic agent (a stimulant of the central nervous system). The respiratory stimulant action is manifested by an increase in tidal volume associated with a slight increase in respiratory rate. A pressor response may result following doxapram administration. Provided there is no impairment of cardiac function, the pressor effect is more marked in hypovolemic than in normovolemic states. The pressor response is due to the improved cardiac output rather than peripheral vasoconstriction. Following doxapram administration, an increased release of catecholamines has been noted. Doxapram produces respiratory stimulation mediated through the peripheral carotid chemoreceptors. It is thought to stimulate the carotid body by inhibiting certain potassium channels. Used as temporary measure in hospitalized patients with acute respiratory insufficiency superimposed on chronic obstructive pulmonary disease.