{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2010)
Source:
ANDA090248
(2010)
Source URL:
First approved in 1981
Source:
NDA018276
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Alprazolam, a benzodiazepine, is used to treat panic disorder and anxiety disorder. Unlike chlordiazepoxide, clorazepate, and prazepam, alprazolam has a shorter half-life and metabolites with minimal activity. Alprazolam may have significant drug interactions involving the hepatic cytochrome P-450 3A4 isoenzyme. Clinically, all benzodiazepines cause a dose-related central nervous system depressant activity varying from mild impairment of task performance to hypnosis. Unlike other benzodiazepines, alprazolam may also have some antidepressant activity, although clinical evidence of this is lacking. CNS agents of the 1,4 benzodiazepine class presumably exert their effects by binding at stereo specific receptors at several sites within the central nervous system. Their exact mechanism of action is unknown. Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Status:
US Approved Rx
(2017)
Source:
ANDA208820
(2017)
Source URL:
First approved in 1981
Source:
NADA111607
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Praziquantel, marketed as Biltricide, is an anthelmintic used in humans and animals for the treatment of tapeworms and flukes. Specifically, it is effective against schistosoma, Clonorchis sinensis the fish tape worm Diphyllobothrium latum. Praziquantel works by causing severe spasms and paralysis of the worms' muscles. This paralysis is accompanied - and probably caused - by a rapid Ca 2+ influx inside the schistosome. Morphological alterations are another early effect of praziquantel. These morphological alterations are accompanied by an increased exposure of schistosome antigens at the parasite surface. The worms are then either completely destroyed in the intestine or passed in the stool. An interesting quirk of praziquantel is that it is relatively ineffective against juvenile schistosomes. While initially effective, effectiveness against schistosomes decreases until it reaches a minimum at 3-4 weeks. Effectiveness then increases again until it is once again fully effective at 6-7 weeks. Glutathione S-transferase (GST), an essential detoxification enzyme in parasitic helminths, is a major vaccine target and a drug target against schistosomiasis. Schistosome calcium ion channels are currently the only known target of praziquantel. The antibiotic rifampicin decreases plasma concentrations of praziquantel. Carbamazepine and phenytoin are reported to reduce the bioavailability of praziquantel. Chloroquine reduces the bioavailability of praziquantel. The drug cimetidine heightens praziquantel bioavailability.
Status:
US Approved Rx
(2013)
Source:
ANDA202180
(2013)
Source URL:
First approved in 1981
Source:
DESYREL by PRAGMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Trazodone (brand name Oleptro, Desyrel, etc) is a serotonin uptake inhibitor that is used as an antidepressive agent. Trazodone binds to the 5-HT2 receptor, it acts as a serotonin agonist at high doses and a serotonin antagonist at low doses. Like fluoxetine, trazodone's antidepressant activity likely results from blockage of serotonin reuptake by inhibiting serotonin reuptake pump at the presynaptic neuronal membrane. If used for long time periods, postsynaptic neuronal receptor binding sites may also be affected. The sedative effect of trazodone is likely the result of alpha-adrenergic blocking action and modest histamine blockade at the H1 receptor. It weakly blocks presynaptic alpha2-adrenergic receptors and strongly inhibits postsynaptic alpha1 receptors. Trazodone does not affect the reuptake of norepinephrine or dopamine within the CNS. Because of its lack of anticholinergic side effects, trazodone is especially useful in situations in which antimuscarinic effects are particularly problematic (e.g., in patients with benign prostatic hyperplasia, closed-angle glaucoma, or severe constipation). Trazodone's propensity to cause sedation is a dual-edged sword. For many patients, the relief from agitation, anxiety, and insomnia can be rapid; for other patients, including those individuals with considerable psychomotor retardation and feelings of low energy, therapeutic doses of trazodone may not be tolerable because of sedation. Trazodone elicits orthostatic hypotension in some patients, probably as a consequence of α1-adrenergic receptor blockade. Mania has been observed in association with trazodone treatment, including in patients with bipolar disorder, as well as in patients with previous diagnoses of major depression. Compared to the reversible MAOI antidepressant drug moclobemide, significantly more impairment of vigilance occurs with trazodone.
Status:
US Approved Rx
(2008)
Source:
ANDA078807
(2008)
Source URL:
First approved in 1979
Source:
REGLAN by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Metoclopramide is a dopamine D2 antagonist that is used as an antiemetic. Metoclopramide inhibits gastric smooth muscle relaxation produced by dopamine, therefore increasing cholinergic response of the gastrointestinal smooth muscle. It accelerates intestinal transit and gastric emptying by preventing relaxation of gastric body and increasing the phasic activity of antrum. Simultaneously, this action is accompanied by relaxation of the upper small intestine, resulting in an improved coordination between the body and antrum of the stomach and the upper small intestine. Metoclopramide also decreases reflux into the esophagus by increasing the resting pressure of the lower esophageal sphincter and improves acid clearance from the esophagus by increasing amplitude of esophageal peristaltic contractions. Metoclopramide's dopamine antagonist action raises the threshold of activity in the chemoreceptor trigger zone and decreases the input from afferent visceral nerves. Studies have also shown that high doses of metoclopramide can antagonize 5-hydroxytryptamine (5-HT) receptors in the peripheral nervous system in animals. Metoclopramide is used for the treatment of gastroesophageal reflux disease (GERD). It is also used in treating nausea and vomiting, and to increase gastric emptying.
Status:
US Approved Rx
(2022)
Source:
ANDA214653
(2022)
Source URL:
First approved in 1978
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Verapamil is a FDA approved drug used to treat high blood pressure and to control chest pain. Verapamil is an L-type calcium channel blocker that also has antiarrythmic activity. The R-enantiomer is more effective at reducing blood pressure compared to the S-enantiomer. However, the S-enantiomer is 20 times more potent than the R-enantiomer at prolonging the PR interval in treating arrhythmias. Verapamil inhibits voltage-dependent calcium channels. Specifically, its effect on L-type calcium channels in the heart causes a reduction in ionotropy and chronotropy, thuis reducing heart rate and blood pressure. Verapamil's mechanism of effect in cluster headache is thought to be linked to its calcium-channel blocker effect, but which channel subtypes are involved is presently not known.
Status:
US Approved Rx
(1995)
Source:
ANDA073541
(1995)
Source URL:
First approved in 1977
Source:
FLEXERIL by JANSSEN RES AND DEV
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Cyclobenzaprine is a centrally-acting muscle relaxant which boosts levels of norepinephrine and binds to serotonin receptors in the brain to reduce spasm. Cytochromes P-450 3A4, 1A2, and, to a lesser extent, 2D6, mediate N-demethylation, one of the oxidative pathways for cyclobenzaprine. Cyclobenzaprine relieves skeletal muscle spasm of local origin without interfering with muscle function. Drowsiness, fatigue and sedation (up to 40%) is the most common side effect of Cyclobenzaprine. It may have life-threatening interactions with monoamine oxidase (MAO) inhibitors. Postmarketing cases of serotonin syndrome have been reported during combined use of cyclobenzaprine and other drugs such as selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), tramadol, bupropion, meperidine, verapamil, or MAO inhibitors.
Status:
US Approved Rx
(2003)
Source:
ANDA074732
(2003)
Source URL:
First approved in 1977
Source:
NOLVADEX by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Status:
US Approved Rx
(1993)
Source:
ANDA074201
(1993)
Source URL:
First approved in 1976
Source:
NDA017581
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Naproxen (naproxen sodium, NAPROSYN®) is a propionic acid derivative related to the arylacetic acid group of nonsteroidal anti-inflammatory drugs (NSAIDs). It is an anti-inflammatory agent with analgesic and antipyretic properties. Both the acid and its sodium salt are used in the treatment of rheumatoid arthritis and other rheumatic or musculoskeletal disorders, dysmenorrhea, and acute gout. The mechanism of action of the naproxen (naproxen sodium, NAPROSYN®), like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2).
Status:
US Approved Rx
(1996)
Source:
ANDA074582
(1996)
Source URL:
First approved in 1976
Source:
DANOCRINE by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Danazol is a synthetic derivative of ethisterone which is approved by FDA for the treatment of endometriosis, fibrocystic breast disease and for preventing hereditary angioedema. It is believed that the in vivo therapeutic effect is achieved through activating androgen receptors. Danazol has teratogenic effects.
Status:
US Approved Rx
(2022)
Source:
ANDA214475
(2022)
Source URL:
First approved in 1976
Source:
NALFON by KEY THERAP
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Fenoprofen is a propionic acid derivative with analgesic, antiinflammatory and antipyretic properties. Fenoprofen inhibits prostaglandin synthesis by decreasing the enzyme needed for biosynthesis. In patients with rheumatoid arthritis, the anti-inflammatory action of fenoprofen has been evidenced by relief of pain, increase in grip strength, and reductions in joint swelling, duration of morning stiffness, and disease activity (as assessed by both the investigator and the patient). In patients with osteoarthritis, the anti-inflammatory and analgesic effects of fenoprofen have been demonstrated by reduction in tenderness as a response to pressure and reductions in night pain, stiffness, swelling, and overall disease activity (as assessed by both the patient and the investigator). These effects have also been demonstrated by relief of pain with motion and at rest and increased range of motion in involved joints. In patients with rheumatoid arthritis and osteoarthritis, clinical studies have shown fenoprofen to be comparable to aspirin in controlling the aforementioned measures of disease activity, but mild gastrointestinal reactions (nausea, dyspepsia) and tinnitus occurred less frequently in patients treated with fenoprofen than in aspirin-treated patients. It is not known whether fenoprofen causes less peptic ulceration than does aspirin. In patients with pain, the analgesic action of fenoprofen has produced a reduction in pain intensity, an increase in pain relief, improvement in total analgesia scores, and a sustained analgesic effect. Indicated for relief of the signs and symptoms of rheumatoid arthritis and osteoarthritis. Also for the relief of mild to moderate pain.