U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1741 - 1750 of 2263 results

Status:
First approved in 1943
Source:
Aralen by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Chloroquine (brand name Aralen) is indicated for the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum. The drug is also indicated for the treatment of extraintestinal amebiasis. In addition, chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and as a potential antiviral agent against chikungunya fever. The mechanism of plasmodicidal action of chloroquine is not completely certain. However, is existed theory, that like other quinoline derivatives, it is thought to inhibit heme polymerase activity. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.
Status:
First approved in 1943
Source:
Aralen by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Chloroquine (brand name Aralen) is indicated for the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum. The drug is also indicated for the treatment of extraintestinal amebiasis. In addition, chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and as a potential antiviral agent against chikungunya fever. The mechanism of plasmodicidal action of chloroquine is not completely certain. However, is existed theory, that like other quinoline derivatives, it is thought to inhibit heme polymerase activity. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function.
Status:
First approved in 1943
Source:
Aralen by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Chloroquine (brand name Aralen) is indicated for the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum. The drug is also indicated for the treatment of extraintestinal amebiasis. In addition, chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and as a potential antiviral agent against chikungunya fever. The mechanism of plasmodicidal action of chloroquine is not completely certain. However, is existed theory, that like other quinoline derivatives, it is thought to inhibit heme polymerase activity. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.
Status:
First approved in 1943
Source:
Aralen by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Chloroquine (brand name Aralen) is indicated for the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum. The drug is also indicated for the treatment of extraintestinal amebiasis. In addition, chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and as a potential antiviral agent against chikungunya fever. The mechanism of plasmodicidal action of chloroquine is not completely certain. However, is existed theory, that like other quinoline derivatives, it is thought to inhibit heme polymerase activity. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function.

Showing 1741 - 1750 of 2263 results