{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2010)
Source:
NDA022548
(2010)
Source URL:
First approved in 1999
Source:
Tequin
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Gatifloxacin is a recently developed antibacterial agent differing from earlier fluoroquinolones by the presence of a methoxy group at the C-8 position. The presence of the methoxy group has conferred improved antibacterial activity against both Gram-positive and Gram-negative organisms, making gatifloxacin a broad-spectrum antimicrobial agent applicable in many clinical settings. Gatifloxacin is sold under the brand Zymar and is indicated for the treatment of bacterial conjunctivitis caused by susceptible strains of the following organisms: Aerobic Gram-Positive Bacteria: Cornyebacterium propinquum, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mitis, Streptococcus pneumoniae and Aerobic Gram-Negative Bacteria: Haemophilus influenza. The antibacterial action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase, which allows the untwisting required to replicate one DNA double helix into two. Notably the drug has 100 times higher affinity for bacterial DNA gyrase than for mammalian. In addition, Gatifloxacin inhibits bacterial topoisomerase IV. This enzyme is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division. The mechanism of action of fluoroquinolones including gatifloxacin is different from that of aminoglycoside, macrolide, and tetracycline antibiotics. Therefore, gatifloxacin may be active against pathogens that are resistant to these antibiotics and these antibiotics may be active against pathogens that are resistant to gatifloxacin. There is no cross-resistance between gatifloxacin and the aforementioned classes of antibiotics. Cross-resistance has been observed between systemic gatifloxacin and some other fluoroquinolones.
Status:
US Approved Rx
(2010)
Source:
NDA022548
(2010)
Source URL:
First approved in 1999
Source:
Tequin
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Gatifloxacin is a recently developed antibacterial agent differing from earlier fluoroquinolones by the presence of a methoxy group at the C-8 position. The presence of the methoxy group has conferred improved antibacterial activity against both Gram-positive and Gram-negative organisms, making gatifloxacin a broad-spectrum antimicrobial agent applicable in many clinical settings. Gatifloxacin is sold under the brand Zymar and is indicated for the treatment of bacterial conjunctivitis caused by susceptible strains of the following organisms: Aerobic Gram-Positive Bacteria: Cornyebacterium propinquum, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mitis, Streptococcus pneumoniae and Aerobic Gram-Negative Bacteria: Haemophilus influenza. The antibacterial action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase, which allows the untwisting required to replicate one DNA double helix into two. Notably the drug has 100 times higher affinity for bacterial DNA gyrase than for mammalian. In addition, Gatifloxacin inhibits bacterial topoisomerase IV. This enzyme is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division. The mechanism of action of fluoroquinolones including gatifloxacin is different from that of aminoglycoside, macrolide, and tetracycline antibiotics. Therefore, gatifloxacin may be active against pathogens that are resistant to these antibiotics and these antibiotics may be active against pathogens that are resistant to gatifloxacin. There is no cross-resistance between gatifloxacin and the aforementioned classes of antibiotics. Cross-resistance has been observed between systemic gatifloxacin and some other fluoroquinolones.
Status:
US Approved Rx
(2010)
Source:
NDA022548
(2010)
Source URL:
First approved in 1999
Source:
Tequin
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Gatifloxacin is a recently developed antibacterial agent differing from earlier fluoroquinolones by the presence of a methoxy group at the C-8 position. The presence of the methoxy group has conferred improved antibacterial activity against both Gram-positive and Gram-negative organisms, making gatifloxacin a broad-spectrum antimicrobial agent applicable in many clinical settings. Gatifloxacin is sold under the brand Zymar and is indicated for the treatment of bacterial conjunctivitis caused by susceptible strains of the following organisms: Aerobic Gram-Positive Bacteria: Cornyebacterium propinquum, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mitis, Streptococcus pneumoniae and Aerobic Gram-Negative Bacteria: Haemophilus influenza. The antibacterial action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase, which allows the untwisting required to replicate one DNA double helix into two. Notably the drug has 100 times higher affinity for bacterial DNA gyrase than for mammalian. In addition, Gatifloxacin inhibits bacterial topoisomerase IV. This enzyme is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division. The mechanism of action of fluoroquinolones including gatifloxacin is different from that of aminoglycoside, macrolide, and tetracycline antibiotics. Therefore, gatifloxacin may be active against pathogens that are resistant to these antibiotics and these antibiotics may be active against pathogens that are resistant to gatifloxacin. There is no cross-resistance between gatifloxacin and the aforementioned classes of antibiotics. Cross-resistance has been observed between systemic gatifloxacin and some other fluoroquinolones.
Status:
US Approved Rx
(2025)
Source:
ANDA218406
(2025)
Source URL:
First approved in 1998
Source:
NDA020850
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Status:
US Approved Rx
(2025)
Source:
ANDA218406
(2025)
Source URL:
First approved in 1998
Source:
NDA020850
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Status:
US Approved Rx
(2012)
Source:
ANDA090351
(2012)
Source URL:
First approved in 1997
Source:
NDA020757
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Irbesartan is an angiotensin receptor blocker (ARB) used mainly for the treatment of hypertension. It was developed by Sanofi Research (now part of Sanofi-Aventis). It is marketed under the trade names Aprovel, Karvea, and Avapro. AVAPRO is an angiotensin II receptor blocker (ARB) indicated for:
• Treatment of hypertension, to lower blood pressure. Lowering blood
pressure reduces the risk of fatal and nonfatal cardiovascular events,
primarily strokes and myocardial infarctions.
• Treatment of diabetic nephropathy in hypertensive patients with type 2
diabetes, an elevated serum creatinine, and proteinuria.
Irbesartan is a specific competitive antagonist of AT1 receptors with a much greater affinity
(more than 8500-fold) for the AT1 receptor than for the AT2 receptor and no agonist activity.
Status:
US Approved Rx
(2007)
Source:
NDA022042
(2007)
Source URL:
First approved in 1997
Source:
NDA020815
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Raloxifene (marketed as Evista by Eli Lilly and Company) is an oral selective estrogen receptor modulator (SERM) that has estrogenic actions on bone and anti-estrogenic actions on the uterus and breast. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibition of their proliferative capacity. This inhibition is thought to contribute to the drug's effect on bone resorption. Other mechanisms include the suppression of the activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechanism of action of raloxifene has not been fully determined, but evidence suggests that the drug's tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. Raloxifene is indicated for the treatment and prevention of osteoporosis in postmenopausal women. It is also used for reduction of risk and treatment of invasive breast cancer, and it also reduces breast density. For either osteoporosis treatment or prevention, supplemental calcium and/or vitamin D should be added to the diet if daily intake is inadequate. Common adverse events considered to be drug-related were hot flashes and leg cramps.
Status:
US Approved Rx
(2023)
Source:
ANDA206027
(2023)
Source URL:
First approved in 1997
Source:
Duract
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Bromfenac is a topical, nonsteroidal anti-inflammatory drug (NSAID) for ophthalmic use. It is indicated for the treatment of postoperative inflammation and reduction of ocular pain in patients who have undergone cataract surgery. The mechanism of its action is thought to be due to its ability to block prostaglandin synthesis by inhibiting cyclooxygenase 1 and 2. The most commonly reported adverse reactions in 3 to 8% of patients were anterior chamber inflammation, foreign body sensation, eye pain, photophobia and vision blurred.
Status:
US Approved Rx
(2018)
Source:
NDA210867
(2018)
Source URL:
First approved in 1997
Source:
NADA141087
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Moxidectin is a semi-synthetic methoxime derivative of LL F-2924α, commonly referred as F-alpha or nemadectin F-alpha is a product of fermentation of Streptomyces cyaneogriseus subsp. noncyanogenus, a bacterial organism isolated in 1983 from a sample of sand from Victoria, Australia. Moxidectin is a potent, broad-spectrum endectocide with activity against a wide range of nematodes, insects and acari. The compound acts by binding to ligand-gated chloride channels, more specifically the subtypes that are gamma-aminobutyric (GABA) mediated and glutamate-gated. The consequence of Moxidectin binding and activation is an increased permeability, leading to an influx of chloride ions and flaccid paralysis of the parasite leading to death. The macrocyclic lactones probably act by binding to and opening glutamate-gated chloride channels found only in neurons and myocytes of invertebrates. Because moxidectin is very lipophilic, it becomes highly concentrated in the serum. When the concentration of moxidectin in the serum is high, moxidectin is able to cross the blood-brain barrier. Once it is in the central nervous system, a macrocyclic lactone stimulates the synaptic secretion of the inhibitory neurotransmitter, GABA. By binding at the receptor site, GABA causes influx of chloride ions into neurons, causing the neurons to become hyperpolarised, which in turn, causes diminution in neuronal activity, resulting in sedation and relaxation of the skeletal muscles. Signs displayed by foals with moxidectin toxicity included dyspnoea, depression, ataxia, weakness, coma and seizures. In a Phase 3 study compared the efficacy, safety and tolerability of moxidectin and ivermectin in subjects infected with Onchocerca volvulus, which is the parasite that causes river blindness.
Status:
US Approved Rx
(2021)
Source:
ANDA214816
(2021)
Source URL:
First approved in 1997
Source:
NDA020646
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Tiagabine (trade name Gabitril) is an anticonvulsant medication used in the treatment of Partial Seizures. The precise mechanism by which Tiagabine exerts its antiseizure effect is unknown, although it is believed to be related to its ability to enhance the activity of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Tiagabine binds to recognition sites associated with the GABA uptake carrier. It is thought that, by this action, Tiagabine blocks GABA uptake into presynaptic neurons, permitting more GABA to be available for receptor binding on the surfaces of post-synaptic cells. Tiagabine is approved by U.S. Food and Drug Administration (FDA) as an adjunctive treatment for partial seizures in individuals of age 12 and up. It may also be prescribed off-label by physicians to treat anxiety disorders and panic disorder as well as neuropathic pain (including fibromyalgia). For anxiety and neuropathic pain, tiagabine is used primarily to augment other treatments. Tiagabine may be used alongside selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, or benzodiazepines for anxiety, or antidepressants, gabapentin, other anticonvulsants, or opioids for neuropathic pain. The most common side effect of tiagabine is dizziness. Other side effects that have been observed with a rate of statistical significance relative to placebo include asthenia, somnolence, nervousness, memory impairment, tremor, headache, diarrhea, and depression.