U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 491 - 500 of 132111 results

Formoterol is a long-acting selective beta2-adrenergic receptor agonist (beta2-agonist). Inhaled formoterol fumarate acts locally in the lung as a bronchodilator. In vitro studies have shown that formoterol has more than 200-fold greater agonist activity at beta2-receptors than at beta1- receptors. Although beta2-receptors are the predominant adrenergic receptors in bronchial smooth muscle and beta1-receptors are the predominant receptors in the heart, there are also beta2-receptors in the human heart comprising 10%-50% of the total beta-adrenergic receptors. The precise function of these receptors has not been established, but they raise the possibility that even highly selective beta2- agonists may have cardiac effects. The pharmacologic effects of beta2-adrenoceptor agonist drugs, including formoterol, are at least in part attributable to stimulation of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3', 5'-adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibits the release of pro-inflammatory mast-cell mediators such as histamine and leukotrienes. Formoterol also inhibits histamine-induced plasma albumin extravasation in anesthetized guinea pigs and inhibits allergen-induced eosinophil influx in dogs with airway hyper-responsiveness. The relevance of these in vitro and animal findings to humans is unknown. Formoterol is used for use as long-term maintenance treatment of asthma in patients 6 years of age and older with reversible obstructive airways disease, including patients with symptoms of nocturnal asthma, who are using optimal corticosteroid treatment and experiencing regular or frequent breakthrough symptoms requiring use of a short-acting bronchodilator. Not indicated for asthma that can be successfully managed with occasional use of an inhaled, short-acting beta2-adrenergic agonist. Also used for the prevention of exercise-induced bronchospasm, as well as long-term treatment of bronchospasm associated with COPD. Marketed as Foradil Aerolizer.
Caspofungin is an echinocandin antifungal drug, which is approved and is sold under the brand worldwide name cancidas. Caspofungin inhibits the synthesis of beta (1,3)-D-glucan, an essential component of the cell wall of susceptible Aspergillus species and Candida species. Beta (1,3)-D-glucan is not present in mammalian cells. Cancidas is indicated for the treatment of candidemia and the following candida infections: intra-abdominal abscesses, peritonitis, and pleural space infections in adult and pediatric patients. Also is indicated for the treatment of esophageal candidiasis in adult and pediatric patients and for the treatment of invasive aspergillosis in adult and pediatric patients, but has not been studied as initial therapy for invasive aspergillosis.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Ertapenem is a carbapenem antibiotic marketed by Merck as Invanz. The bactericidal activity of ertapenem results from the inhibition of cell wall synthesis and is mediated through ertapenem binding to penicillin binding proteins (PBPs). In Escherichia coli, it has strong affinity toward PBPs 1a, 1b, 2, 3, 4 and 5 with preference for PBPs 2 and 3. Ertapenem has been designed to be effective against Gram-negative and Gram-positive bacteria. The most common drug-related adverse experiences in patients treated with INVANZ, including those who were switched to therapy with an oral antimicrobial, were diarrhea (5.5%), infused vein complication (3.7%), nausea (3.1%), headache (2.2%), vaginitis in females (2.1%), phlebitis/thrombophlebitis (1.3%), and vomiting (1.1%). The coadministration with probenecid to extend the half-life of ertapenem is not recommended.
Frovatriptan succinate (trade name Frova) is a selective 5-hydroxytryptamine1 (5-HT1B/1D) receptor subtype agonist, and is used for the treatment of migraine attacks with or without aura in adults. Frovatriptan has no significant effects on GABAA mediated channel activity and has no significant affinity for benzodiazepine binding sites. Frovatriptan is believed to act on extracerebral, intracranial arteries and to inhibit excessive dilation of these vessels in migraine. Serious but rare cardiac events have been reported in patients with risk factors predictive of coronary artery disease (CAD). These include coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia and ventricular fibrillation.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pimecrolimus, an ascomycin macrolactam derivative, is an inhibitor of T-cell and mast-cell activation, developed and launched by Novartis for the potential treatment of psoriasis and allergic, irritant and atopic dermatitis. The topical formulation had been launched in the US by February 2002 for mild-to-moderate atopic dermatitis in patients aged two years and older. Pimecrolimus is an immunomodulating agent. The mechanism of action of pimecrolimus in atopic dermatitis is not known. While the following have been observed, the clinical significance of these observations in atopic dermatitis is not known. It has been demonstrated that pimecrolimus binds with high affinity to macrophilin-12 (FKBP-12) and inhibits the calcium dependent phosphatase, calcineurin. Therefore, it inhibits T cell activation by blocking the transcription of early cytokines. In particular, pimecrolimus inhibits at nanomolar concentrations Interleukin-2 and interferon gamma (Th1-type) and Interleukin-4 and Interleukin-10 (Th2-type) cytokine synthesis in human T-cells. In addition, pimecrolimus prevents the release of inflammatory cytokines and mediators from mast cells in vitro after stimulation by antigen/IgE. Following the administration of a single oral radiolabeled dose of pimecrolimus numerous circulating O-demethylation metabolites were seen. Studies with human liver microsomes indicate that pimecrolimus is metabolized in vitro by the CYP3A sub-family of metabolizing enzymes. No evidence of skin mediated drug metabolism was identified in vivo using the minipig or in vitro using stripped human skin.
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).
Bosentan is a dual endothelin receptor antagonist important in the treatment of pulmonary artery hypertension (PAH). It is licensed in the United States, the European Union and other countries by Actelion Pharmaceuticals for the management of PAH under the trade name Tracleer®. Bosentan is used to treat pulmonary hypertension by blocking the action of endothelin molecules that would otherwise promote narrowing of the blood vessels and lead to high blood pressure. Bosentan competitively antagonizes the binding of 125I-labeled ET-1 to human vascular smooth muscle cells (predominantly ETA receptors) with an inhibition constant (Ki ) of 4.7 nM and to human placenta membranes (predominantly ETB receptors) with a Ki of 95 nM. Furthermore, bosentan is specific for endothelin receptors and does not interfere with the binding of a variety of peptides, neurotransmitters, growth factors, or eicosanoids to their receptors.
Zoledronic acid (Reclast, Aclasta, Zometa) is an intravenous, highly potent amino-bisphosphonate approved worldwide, including in the USA, EU and Japan for use in patients with primary or secondary osteoporosis or low bone mass (approved indications vary between countries). Its high affinity to and long half-life in bone, and long duration of action allow for once-yearly administration, which has the potential to improve adherence to therapy. Zoledronic acid once yearly for up to 3 years improved bone mineral density (BMD) at several skeletal sites, reduced fracture risk and bone turnover, and/or preserved bone structure and mass relative to placebo in clinical studies in patients with primary or secondary osteoporosis. While additional benefits were seen when treatment was continued for up to 6 years, as evidenced by a reduced risk of vertebral fractures and higher BMD relative to 3 years’ therapy, there was the minimal advantage of treatment beyond 6 years. Therefore, in patients with low fracture risk, treatment discontinuation should be considered after approximately 5 years’ therapy. Zoledronic acid administered annually or once in 2 years was also effective in preventing bone loss in patients with low bone mass. Zoledronic acid was generally well tolerated, with the most common adverse events (AEs) being transient, mild-to-moderate post-infusion symptoms, which decreased with subsequent infusions.
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.