U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 10 results

Uridine triacetate (formally PN401) is an acetylated prodrug of uridine. Following oral administration, uridine triacetate is deacetylated by nonspecific esterases present throughout the body, yielding uridine in the circulation. Uridine triacetate under VISTOGARD trade name is a uridine replacement agent approved for the emergency treatment of fluorouracil or capecitabine overdose (regardless of the presence of symptoms) or early-onset severe or life-threatening cardiac or central nervous system (CNS) toxicity and/or early-onset unusually severe adverse reactions (eg, gastrointestinal [GI] toxicity and/or neutropenia) within 96 hours following the end of fluorouracil or capecitabine administration in adult and pediatric patients. Uridine competitively inhibits cell damage and cell death caused by fluorouracil. Fluorouracil is a cytotoxic antimetabolite that interferes with nucleic acid metabolism in normal and cancer cells. Cells anabolize fluorouracil to the cytotoxic intermediates 5-fluoro-2’-deoxyuridine-5’- monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). FdUMP inhibits thymidylate synthase, blocking thymidine synthesis. Thymidine is required for DNA replication and repair. Uridine is not found in DNA. The second source of fluorouracil cytotoxicity is the incorporation of its metabolite, FUTP, into RNA. This incorporation of FUTP into RNA is proportional to systemic fluorouracil exposure. Excess circulating uridine derived from VISTOGARD is converted into uridine triphosphate (UTP), which competes with FUTP for incorporation into RNA. Uridine triacetate is also approved for the treatment of hereditary orotic aciduria under XURIDEN trade name. Uridine triacetate provides uridine in the systemic circulation of patients with hereditary orotic aciduria who cannot synthesize adequate quantities of uridine due to a genetic defect in uridine nucleotide synthesis.
Status:
Investigational
Source:
NCT03725605: Phase 2 Interventional Completed Soft Tissue Sarcoma
(2018)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


LTX-315 is a cationic amphipathic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. The oncolytic effect of LTX-315 involves a unique immunogenic cell death targeting the mitochondria with subsequent release of danger-associated molecular pattern molecules. This initial targeting of the mitochondria is followed by disintegration of other cytoplasmic organelles resulting ineffective release of additional danger signals and a broad repertoire of tumour antigens and finally lysis of plasma membrane (necrosis). Preclinical and clinical studies have demonstrated LTX-315`s unique ability to reshape the tumour microenvironment by inducing the effective release of danger signals, chemokines and a broad repertoire of tumour antigens. These properties of LTX-315 results in enhanced infiltration of activated CD 8 T cells and Th1 responses. This ability to convert non-T cell inflamed tumours to T cell inflamed tumours makes LTX-315 an ideal combination partner with other types of immunotherapy, including immune checkpoint inhibitors/agonists, vaccines, and T cell-based therapies. Both preclinical and clinical studies have confirmed LTX-315s ability to induce a systemic anticancer immune response when injected locally into tumours resulting in complete or partial regression of injected and non-injected tumours (i.e. abscopal effect). Preclinical studies have demonstrated strong synergy with immune-checkpoint blockade which have given the scientific rationale for initiating combinations studies with Ipilimumab and Pembrolizumab in melanoma and TNB cancer patients respectively. Phase Ib study combining LTX-315 with ipilimumab (anti-CTLA4) in malignant melanoma patients, as well as LTX-315 with pembrolizumab (anti-PD-1) in metastatic breast cancer patients, is ongoing.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Status:
Possibly Marketed Outside US
Source:
Lung Guarder by Hainan Zehuitang Biotechnology Co., LTD
(2024)
Source URL:
First approved in 2024
Source:
Lung Guarder by Hainan Zehuitang Biotechnology Co., LTD
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Rose bengal sodium (RB) is a small molecule, halogenated xanthene being developed by Provectus Biopharmaceuticals (formerly Provectus Pharmaceuticals). It is commonly used in eye drops to stain damaged conjunctival and corneal cells and thereby identify damage to the eye. The stain is also used in the preparation of Foraminifera for microscopic analysis, allowing the distinction between forms that were alive or dead at the time of collection. A form of rose bengal is also being studied as a treatment for certain cancers and skin conditions. The cancer formulation of the drug, known as PV-10, is currently undergoing clinical trials for melanoma and breast cancer. Recently, interest in RB as a therapeutic cancer treatment has increased due to significant anti-tumor responses with direct tumor injection in human clinical trials for metastatic melanoma. In these patients, there has been the implication that RB may mount a T-cell mediated anti-tumor response and impart antigen-specific responses in distant bystander lesions.
Uridine triacetate (formally PN401) is an acetylated prodrug of uridine. Following oral administration, uridine triacetate is deacetylated by nonspecific esterases present throughout the body, yielding uridine in the circulation. Uridine triacetate under VISTOGARD trade name is a uridine replacement agent approved for the emergency treatment of fluorouracil or capecitabine overdose (regardless of the presence of symptoms) or early-onset severe or life-threatening cardiac or central nervous system (CNS) toxicity and/or early-onset unusually severe adverse reactions (eg, gastrointestinal [GI] toxicity and/or neutropenia) within 96 hours following the end of fluorouracil or capecitabine administration in adult and pediatric patients. Uridine competitively inhibits cell damage and cell death caused by fluorouracil. Fluorouracil is a cytotoxic antimetabolite that interferes with nucleic acid metabolism in normal and cancer cells. Cells anabolize fluorouracil to the cytotoxic intermediates 5-fluoro-2’-deoxyuridine-5’- monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). FdUMP inhibits thymidylate synthase, blocking thymidine synthesis. Thymidine is required for DNA replication and repair. Uridine is not found in DNA. The second source of fluorouracil cytotoxicity is the incorporation of its metabolite, FUTP, into RNA. This incorporation of FUTP into RNA is proportional to systemic fluorouracil exposure. Excess circulating uridine derived from VISTOGARD is converted into uridine triphosphate (UTP), which competes with FUTP for incorporation into RNA. Uridine triacetate is also approved for the treatment of hereditary orotic aciduria under XURIDEN trade name. Uridine triacetate provides uridine in the systemic circulation of patients with hereditary orotic aciduria who cannot synthesize adequate quantities of uridine due to a genetic defect in uridine nucleotide synthesis.