{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2005)
Source:
NDA021923
(2005)
Source URL:
First approved in 2005
Source:
NDA021923
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sorafenib (BAY 43-9006), marketed as Nexavar by Bayer, is a drug approved for the treatment of advanced renal cell carcinoma (primary kidney cancer, hepatocellular carcinoma and for the treatment of patients with locally recurrent or metastatic, progressive, differentiated thyroid carcinoma (DTC) that is refractory to radioactive iodine treatment. It has also received "Fast Track" designation by the FDA for the treatment of advanced hepatocellular carcinoma (primary liver cancer), and has since performed well in Phase III trials. Sorafenib was shown to interact with multiple intracellular (CRAF, BRAF and mutant BRAF) and cell surface kinases (KIT, FLT- 3, VEGFR- 2, VEGFR- 3, and PDGFR- ß). Several of these kinases are thought to be involved in angiogenesis. Thus, sorafenib may inhibit tumor growth by a dual mechanism, acting either directly on the tumor (through inhibition of Raf and Kit signaling) and/or on tumor angiogenesis (through inhibition of VEGFR and PDGFR signaling). Sorafenib inhibited tumor growth of the murine renal cell carcinoma, RENCA, and several other human tumor xenografts in athymic mice. A reduction in tumor angiogenesis was seen in some tumor xenograft models.
Status:
US Approved Rx
(2019)
Source:
ANDA208429
(2019)
Source URL:
First approved in 2001
Source:
GLEEVEC by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.
Status:
US Approved Rx
(2019)
Source:
ANDA208429
(2019)
Source URL:
First approved in 2001
Source:
GLEEVEC by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.
Status:
Investigational
Source:
NCT00056459: Phase 3 Interventional Completed Colorectal Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vatalanib a potent oral tyrosine kinase inhibitor with a selective range of molecular targets, has been extensively investigated and has shown promising results in patients with solid tumors in early trials. Vatalanib selectively inhibits the tyrosine kinase domains of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (important enzymes in the formation of new blood vessels that contribute to tumor growth and metastasis), platelet-derived growth factor (PDGF) receptor, and c-KIT. The adverse effects of vatalanib appear similar to those of other VEGF inhibitors. In the CONFIRM trials, the most common side effects were high blood pressure, gastrointestinal upset (diarrhea, nausea, and vomiting), fatigue, and dizziness.
Status:
Investigational
Source:
NCT02204644: Phase 3 Interventional Completed CML, CML-CP,MMR,TKI
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Flumatinib (HHGV678) is an orally bioavailable antineoplastic tyrosine kinase inhibitor. Flumatinib inhibits the wild-type forms of Bcr-Abl, platelet-derived growth factor receptor (PDGFR) and mast/stem cell growth factor receptor (SCFR; c-Kit) and forms of these proteins with certain point mutations. Flumatinib was extensively metabolized after oral administration, and the major metabolic pathways observed were amide hydrolysis, demethylation, oxidation, and glucuronide conjugation. It is in phase III clinical trials for the treatment of Chronic myeloid leukemia (in China).
Status:
Investigational
Source:
NCT00842335: Phase 1/Phase 2 Interventional Completed Advanced Solid Tumors
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
CGI-1842 (also known as JI-101) is an oral multi-kinase inhibitor that targets vascular endothelial growth factor receptor type 2 (VEGFR-2), platelet derived growth factor receptor β (PDGFR-β), and ephrin type-B receptor 4 that has been used in trials studying the treatment of Cancer, Colon Cancer, Neuroendocrine, Ovarian Cancer, and Advanced Solid Tumors. By targeting multiple angiogenesis signaling pathways in tumor vessel beds, CGI-1842 has the potential to inhibit multiple stages of tumor angiogenesis and thus enhance anti-tumor efficacy. In preclinical models, CGI-1842 induced concentration-dependent blocking of both EphB4- and VEGF-stimulated signaling pathways and has shown excellent antitumor activity. CGI-1842 is well tolerated in cancer patients and has shown impressive activity in Phase I clinical trials.
Status:
Investigational
Source:
NCT01741116: Phase 2 Interventional Completed Hormone Refractory Prostate Cancer
(2012)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Status:
Investigational
Source:
NCT00056459: Phase 3 Interventional Completed Colorectal Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vatalanib a potent oral tyrosine kinase inhibitor with a selective range of molecular targets, has been extensively investigated and has shown promising results in patients with solid tumors in early trials. Vatalanib selectively inhibits the tyrosine kinase domains of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (important enzymes in the formation of new blood vessels that contribute to tumor growth and metastasis), platelet-derived growth factor (PDGF) receptor, and c-KIT. The adverse effects of vatalanib appear similar to those of other VEGF inhibitors. In the CONFIRM trials, the most common side effects were high blood pressure, gastrointestinal upset (diarrhea, nausea, and vomiting), fatigue, and dizziness.
Status:
Investigational
Source:
NCT00322517: Phase 2 Interventional Completed Breast Neoplasms
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
SU-14813 is an oral, multitargeted tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptors (VEGFR), platelet-derived growth factor receptors (PDGFR), KIT, and fms-like tyrosine kinase 3 (FLT-3). SU-14813 was developed as a next-generation TKI agent following sunitinib (SU-11248) designed to demonstrate optimized pharmacokinetic (PK) and tolerability profiles. SU14813 demonstrated broad and potent antitumor activity equivalent to that of sunitinib, which resulted in tumor regression, growth arrest, growth delay, and prolonged survival in established xenograft cancer models in mice. A phase II trial of SU-14813 in patients with breast cancer was completed. However, according to the Pfizer pipeline development has been discontinued.
Status:
Investigational
Source:
NCT01741116: Phase 2 Interventional Completed Hormone Refractory Prostate Cancer
(2012)
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Conditions:
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.