U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 33 of 33 results

Crenolanib is an orally active, highly selective, small molecule, next generation inhibitor of platelet-derived growth factor receptor (PDGFR) tyrosine kinase. Crenolanib, manufactured by Arog Pharmaceuticals in Dallas, is taken orally with chemotherapy. The compound is currently being evaluated for safety and efficacy in clinical trials for various types of cancer, including acute myeloid leukemia (AML), gastrointestinal stromal tumor (GIST), and glioma. Crenolanib is an orally bioavailable, selective small molecule inhibitor of type III tyrosine kinases with nanomolar potencies against platelet-derived growth factor receptors (PDGFR) (isoforms PDGFRα and PDGFRβ) and Fms-related tyrosine kinase 3 (FLT3). Besides PDGFR and FLT3, crenolanib does not inhibit any other known receptor tyrosine kinase (RTK) (e.g. VEGFR and FGFR) or any other serine/threonine kinase (e.g., Abl, Raf) at clinically achievable concentrations. Preclinical trials have shown Crenolanib to be active in inhibiting both wild-type and mutant FLT3. Crenolanib is cytotoxic to the FLT3/ITD-expressing leukemia cell lines Molm14 and MV411, with IC50s of 7 nM and 8 nM, respectively. In immunoblots, crenolanib inhibited phosphorylation of both the wild-type FLT3 receptor (in SEMK2 cells) and the FLT3/ITD receptor (in Molm14 cells) in culture medium with IC50s of 1-3 nM. Importantly, the IC50 of crenolanib against the D835Y mutated form of FLT3 was 8.8 nM in culture medium. Furthermore, crenolanib had cytotoxic activity against primary samples that were obtained from patients who had developed D835 mutations while receiving FLT3 TKIs. In vitro, the IC50 of crenolanib for inhibition of FLT3/ITD in plasma was found to be 34 nM, indicating a relatively low degree of plasma protein binding. From pharmacokinetic studies of crenolanib in solid tumor patients, steady state trough plasma levels of roughly 500 nM were found to be safe and tolerable, suggesting that crenolanib could potentially inhibit the target in vivo. Crenolanib has no significant activity against c-KIT, which may be an advantage in that myelosuppression can be avoided.1Furthermore, there was no evidence of QTc prolongation in patients treated with crenolanib. In summary, crenolanib offers a number of advantages over other FLT3 TKIs. Clinical trials of crenolanib in AML patients with FLT3 activating mutations are being planned.
Masitinib is a new orally administered tyrosine kinase inhibitor that targets mast cells and macrophages, important cells for immunity, through inhibiting a limited number of kinases. Based on its unique mechanism of action, masitinib can be developed in a large number of conditions in oncology, in inflammatory diseases, and in certain diseases of the central nervous system. In oncology due to its immunotherapy effect, masitinib can have an effect on survival, alone or in combination with chemotherapy. Through its activity on mast cells and consequently the inhibition of the activation of the inflammatory process, masitinib can have an effect on the symptoms associated with some inflammatory and central nervous system diseases and the degeneration of these diseases. AB Science is developing masitinib in multiple sclerosis and alzheimer's disease. Masitinib targets kinases, including c-Kit, PDGFR, and Lyn. It is used in the treatment of mast cell tumors in animals, specifically dogs. Since its introduction in November 2008 it has been distributed under the commercial name Masivet. It has been available in Europe since the second part of 2009. In the USA it is distributed under the name Kinavet.