{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Artenimol (dihydroartemisinin) is a derivate of antimalarial compound artemisinin. Artenimol (dihydroartemisinin) is able to reach high concentrations within the parasitized erythrocytes. Its endoperoxide bridge is thought to be essential for its antimalarial activity, causing free-radical damage to parasite membrane systems including:
• Inhibition of falciparum sarcoplasmic-endoplasmic reticulum calcium ATPase, • Interference with mitochondrial electron transport • Interference with parasite transport proteins • Disruption of parasite mitochondrial function. Dihydroartemisinin in combination with piperaquine tetraphosphate (Eurartesim, EMA-approved in 2011) is indicated for the treatment of uncomplicated Plasmodium falciparum malaria. The formulation meets WHO recommendations, which advise combination treatment for Plasmodium falciparum malaria to reduce the risk of resistance development, with artemisinin-based preparations regarded as the ‘policy standard’. However, experimental testing demonstrates that, due to its intrinsic chemical instability, dihydroartemisinin is not suitable to be used in pharmaceutical formulations. In addition, data show that the currently available dihydroartemisinin preparations fail to meet the internationally accepted stability requirements.
Status:
US Approved Rx
(2018)
Source:
NDA210795
(2018)
Source URL:
First approved in 2018
Source:
NDA210795
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Tafenoquine is anti-malaria drug originated in Walter reed army institute of research and developed by GSK and 60 Degrees Pharmaceuticals. In 2018 United States Food and Drug Administration (FDA) approved single dose tafenoquine for the radical cure (prevention of relapse) of Plasmodium vivax malaria.
Tafenoquine, an 8-aminoquinoline antimalarial, is active against all the stages of Plasmodium species that include the hypnozoite (dormant stage) in the liver. Studies in vitro with the erythrocytic forms of Plasmodium falciparum suggest that tafenoquine may exert its effect by inhibiting hematin polymerization and inducing apoptotic like death of the parasite. In addition to its effect on the parasite, tafenoquine causes red blood cell shrinkage in vitro. Tafenoquine is active against pre-erythrocytic (liver) and erythrocytic (asexual) forms as well as gametocytes of Plasmodium species that include P. falciparum and P. vivax. The activity of tafenoquine against the pre-erythrocytic liver stages of the parasite, prevents the development of the erythrocytic forms of the parasite.
Status:
US Approved Rx
(2009)
Source:
NDA022268
(2009)
Source URL:
First approved in 2009
Source:
NDA022268
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Artemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy against malaria. Artemether is rapidly metabolized into an active metabolite dihydroartemisinin (DHA). The antimalarial activity of artemether and DHA has been attributed to endoperoxide moiety. Artemethe involves an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ions, in the acidic parasite food vacuole, which results in the generation of cytotoxic radical species. The generally accepted mechanism of action of peroxide antimalarials involves interaction of the peroxide-containing drug with heme, a hemoglobin degradation byproduct, derived from proteolysis of hemoglobin. This interaction is believed to result in the formation of a range of potentially toxic oxygen and carbon-centered radicals. Other mechanisms of action for artemether include their ability to reduce fever by production of signals to hypothalamus thermoregulatory center. Now, recent research has shown the presence of a new, previously unknown cyclooxygenase enzyme COX-3, found in the brain and spinal cord, which is selectively inhibited by artemether, and is distinct from the two already known cyclooxygenase enzymes COX-1 and COX-2. It is now believed that this selective inhibition of the enzyme COX-3 in the brain and spinal cord explains the ability of artemether in relieving pain and reducing fever which is produced by malaria. The most common adverse reactions in adults (>30%) are headache, anorexia, dizziness, asthenia, arthralgia and myalgia.
Status:
US Approved Rx
(2003)
Source:
ANDA076392
(2003)
Source URL:
First approved in 1989
Source:
LARIAM by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Mefloquine, sold under the brand names Lariam among others, is a medication used to for the treatment of mild to moderate acute malaria caused by Mefloquineuine-susceptible strains of Plasmodium falciparum (both chloroquine-susceptible and resistant strains) or by Plasmodium vivax. Also for the prophylaxis of Plasmodium falciparum and Plasmodium vivax malaria infections, including prophylaxis of chloroquine-resistant strains of Plasmodium falciparum. Mefloquine acts as a blood schizonticide. Mefloquine is active against the erythrocytic stages of Plasmodium species. However, the drug has no effect against the exoerythrocytic (hepatic) stages of the parasite. Mefloquine is effective against malaria parasites resistant to chloroquine. Mefloquine is a chiral molecule. According to some research, the (+) enantiomer is more effective in treating malaria, and the (-) enantiomer specifically binds to adenosine receptors in the central nervous system, which may explain some of its psychotropic effects.
Status:
US Approved Rx
(2011)
Source:
ANDA091621
(2011)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (RACEMIC)
Chloroquine (brand name Aralen) is indicated for the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum. The drug is also indicated for the treatment of extraintestinal amebiasis. In addition, chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and as a potential antiviral agent against chikungunya fever. The mechanism of plasmodicidal action of chloroquine is not completely certain. However, is existed theory, that like other quinoline derivatives, it is thought to inhibit heme polymerase activity. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function.
Status:
US Approved Rx
(1982)
Source:
ANDA088072
(1982)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Conessine is a plant steroid alkaloid that acts as a potent and specific antagonist of histamine H3 receptors. Conessine displayed high affinity at both rat and human H3 receptors (pKi = 7.61 and 8.27) and generally high selectivity against other sites, including histamine receptors H1, H2, and H4. Conessine was found to efficiently penetrate the CNS and reach very high brain concentrations. Although the very slow CNS clearance and strong binding to adrenergic receptors discouraged focus on conessine itself for further development, its potency and novel steroid-based skeleton motivated further chemical investigation. Modification based on introducing diversity at the 3-nitrogen position generated a new series of H3 antagonists with higher in vitro potency, improved target selectivity, and more favorable drug-like properties. Conessine also has high affinity for the adrenergic receptors. Conessine has being shown to possess anti-malarial activity. In India conessine finds therapeutic use for treatment of dysentery and helminthic disorders.
Status:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Alazanine triclofenate is a mixture of one molecule of 3-ethyl-2-(3-(3-ethyl-2-benzothiazolinylidene)propenyl)benzothiazolium 2,4,5-trichlorophenate and two molecules of 2,4,5-trichlorophenol. It is an antiparasitic agent. It is antimalarial drug, highly active against multiple Plasmodium falciparum isolates with IC50 value of 2.36E-07 M.
Status:
Investigational
Source:
NCT04677855: Phase 1 Interventional Terminated Prostate Cancer
(2021)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Status:
Investigational
Source:
NCT01751698: Not Applicable Interventional Completed Autism
(2013)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Dithiothreitol is a chemical reagent with a wide actuation spectrum not only from a laboratorial view but also from a therapeutic standpoint, more clinical and practical. DTT (i) is frequently used in a variety of experiences that involve proteins or peptides, protecting sulfhydryl groups from oxidation and reducing disulfide bonds between cysteines; (ii) is also used in the study of disulfide exchange reactions of protein disulfides; (iii) is able to keep glutathione in the reduced state; (iv) acts as an "antidote" enabling the activity of detoxification systems; (v) participates in cellular mechanisms such as vesiculation, cell morphology, signal transduction pathways (hormone-'like' role), etc.; (vi) can be used in the treatment approach of diseases like cystinosis or medical conditions resulting from ion or metal toxicity. DTT is as a reducing or "deprotecting" agent.
DTT protects notably enzyme activity loss by the oxidation of sulfhydryl groups. The DTT removal is performed by standard desalting.procedures (dialysis, gelfiltration). As an antioxidant, it is used as a protective agent against ionizing radiations in living cells. It has been used to enhance or inhibit enzymes or receptors activity.